精英家教网 > 高中数学 > 题目详情
平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=-1的距离相等,若机器人接触不到过点P(-1,0)且斜率为k的直线,则k的取值范围是
 
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由抛物线的定义,求出机器人的轨迹方程,过点P(-1,0)且斜率为k的直线方程为y=k(x+1),代入y2=4x,利用判别式,即可求出k的取值范围.
解答: 解:由抛物线的定义可知,机器人的轨迹方程为y2=4x,
过点P(-1,0)且斜率为k的直线方程为y=k(x+1),
代入y2=4x,可得k2x2+(2k2-4)x+k2=0,
∵机器人接触不到过点P(-1,0)且斜率为k的直线,
∴△=(2k2-4)2-4k4<0,
∴k<-1或k>1.
故答案为:k<-1或k>1.
点评:本题考查抛物线的定义,考查直线与抛物线的位置关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

π为圆周率,e=2.71828…为自然对数的底数.
(Ⅰ)求函数f(x)=
lnx
x
的单调区间;
(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;
(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x2+3x|,x∈R,若方程f(x)-a|x-1|=0恰有4个互异的实数根,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是首项为a1,公差为-1的等差数列,Sn为其前n项和,若S1,S2,S4成等比数列,则a1的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
4
-y2=1的离心率等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
3+i
i2
(i为虚数单位)的实部等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

根据如图框图,对大于2的正数N,输出的数列的通项公式是(  )
A、an=2n
B、an=2(n-1)
C、an=2n
D、an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知b>0,log5b=a,lgb=c,5d=10,则下列等式一定成立的是(  )
A、d=acB、a=cd
C、c=adD、d=a+c

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练,已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小(仰角θ为直线AP与平面ABC所成的角).若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是(  )
A、
30
5
B、
30
10
C、
4
3
9
D、
5
3
9

查看答案和解析>>

同步练习册答案