分析 由AB=6cm,BC=8cm,CA=10cm,可得AC即为A、B、C三点所在圆的直径,取AC的中点M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMA中,OA=13cm,MA=5cm,则OM=12cm.
解答
解:如图所示:
∵AB=6 cm,BC=8cm,CA=10cm,
∴∠CBA=90°
∴取AC的中点M,则球面上A、B、C三点所在的圆即为⊙M,连接OM,则OM即为球心到平面ABC的距离,
在Rt△OMA中,OA=13cm,MA=5cm,
∴OM=12cm,即球心到平面ABC的距离为12cm.
点评 本小题主要考查球心到平面ABC的距离,考查学生分析解决问题的能力,比较基础.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直线a∥b,b∥c,则a∥c,类推出:向量$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,则$\overrightarrow a∥\overrightarrow c$ | |
| B. | 同一平面内,直线a,b,c,若a⊥c,b⊥c,则a∥b.类推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a∥b | |
| C. | 实数a,b,若方程x2+ax+b=0有实数根,则a2≥4b.类推出:复数a,b,若方程x2+ax+b=0有实数根,则a2≥4b | |
| D. | 以点(0,0)为圆心,r为半径的圆的方程为x2+y2=r2.类推出:以点(0,0,0)为球心,r为半径的球的方程为x2+y2+z2=r2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com