精英家教网 > 高中数学 > 题目详情
已知双曲线的顶点恰好是椭圆的两个顶点,且焦距是,则此双曲线的渐近线方程是(    )
A.B.C.D.
C

试题分析:由题意可知:椭圆的顶点为,所以双曲线方程中的,焦距为可知,,即:,所以,,双曲线的渐进性方程,故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C的中心在原点,焦点在x轴上,离心率为,且过点,点A、B分别是椭圆C长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.

(1)求椭圆C的方程;
(2)求点P的坐标;
(3)设M是直角三角PAF的外接圆圆心,求椭圆C上的点到点M的距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点分别是椭圆的左、右焦点, 点在椭圆上上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线均与椭圆相切,试探究在轴上是否存在定点,点的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,直线交椭圆两点.
(Ⅰ)求椭圆的焦点坐标及长轴长;
(Ⅱ)求以线段为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点,动点G满足
(Ⅰ)求动点G的轨迹的方程;
(Ⅱ)已知过点且与轴不垂直的直线l交(Ⅰ)中的轨迹于P,Q两点.在线段上是否存在点,使得以MP,MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点P(0,-1)是椭圆C1=1(a>b>0)的一个顶点,C1的长轴是圆C2x2y2=4的直径.l1l2是过点P且互相垂直的两条直线,其中l1交圆C2AB两点,l2交椭圆C1于另一点D.

(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点的双曲线的渐近线方程为为双曲线右支上一点,为双曲线的左焦点,点的最小值为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线上一点P到y轴的距离为6,则点P到焦点的距离为(    )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆的圆心为抛物线的焦点,直线与圆相切,则该圆的方程为(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案