精英家教网 > 高中数学 > 题目详情
过点的双曲线的渐近线方程为为双曲线右支上一点,为双曲线的左焦点,点的最小值为        .
8

试题分析:由题可设双曲线方程为:,把代入得=1,所以双曲线方程为:
设双曲线右焦点为,∵P在双曲线右支上及由双曲线定义可知,∴,当点P为线段与双曲线交点时.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆:的离心率,原点到过点,的直线的距离是.
(1)求椭圆的方程;
(2)若椭圆上一动点关于直线的对称点为,求 的取值范围;
(3)如果直线交椭圆于不同的两点,且都在以为圆心的圆上,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线lxy=0与以原点为圆心, 以椭圆C的短半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设M是椭圆的上顶点,过点M分别作直线MAMB交椭圆于AB两点,设两直线的斜率分别为k1k2,且k1k2=4,证明:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为椭圆上的三个点,为坐标原点.
(1)若所在的直线方程为,求的长;
(2)设为线段上一点,且,当中点恰为点时,判断的面积是否为常数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线在点处的切线垂直相交于点,直线与椭圆相交于两点.

(1)求抛物线的焦点与椭圆的左焦点的距离;
(2)设点到直线的距离为,试问:是否存在直线,使得成等比数列?若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆两焦点坐标分别为,,且经过点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知点,直线与椭圆交于两点.若△是以为直角顶点的等腰直角三角形,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是            (    )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图平面直角坐标系中,椭圆的离心率分别是椭圆的左、右两个顶点,圆的半径为,过点作圆的切线,切点为,在轴的上方交椭圆于点.则       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的顶点恰好是椭圆的两个顶点,且焦距是,则此双曲线的渐近线方程是(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案