精英家教网 > 高中数学 > 题目详情
12.函数f(x)=x|sinx+a|+b(a,b∈R)是奇函数的充要条件是(  )
A.ab=0B.a+b=0C.a=bD.a2+b2=0

分析 由奇函数的性质得到f(0)=0,所以得到b=0,再结合奇函数的定义f(-x)=-f(x)解出a=0即可得到答案.

解答 解:因为函数的定义域为R,所以f(0)=0.
所以b=0.
所以f(x)=x|sinx+a|.
因为函数f(x)是奇函数,
所以f(-x)=-f(x)即-x|-sinx+a|=-x|sinx+a|,
所以|-sinx+a|=|sinx+a|,所以a=0.
故选:D.

点评 解决此类问题的关键是熟练掌握奇函数的定义以及判断充要条件时实际就是解题的等价过程,充要条件的判断一般与其他知识相结合出现在选择题或填空题中.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知z0=2+2i,|z-z0|=$\sqrt{2}$,
(1)求复数z在复平面内对应的点的轨迹方程,并说明它是什么曲线.
(2)求z为何值时,|z|有最大、最小值,并求出|z|有最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对于函数y=f(x),定义域为D=[-2,2],以下命题正确的是(只要求写出命题的序号)①③④
①若函数y=f(x)在D上具有单调性,且f(0)>f(1),则y=f(x)是D上的递减函数;
②若f(-1)<f(0)<f(1)<f(2),则y=f(x)是D上的递增函数;
③若f(x)是D上的递减函数,对任意x∈D,使得f(x)-m≥0恒成立,则必须m≤f(2);
④若f(x)是D上的递增函数,存在x0∈D,使得f(x0)-m≥0成立,则必须m≤f(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.△ABC中,2bcosB=acosC+ccosA
(1)求角B的大小;
(2)求sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y=x2上存在两个不同的点M,N关于直线l:y=-kx+$\frac{9}{2}$对称,求k的取值范围(-∞,-$\frac{1}{4}$)∪($\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若不等式x2+px+q<0的解集是{x|1<x<2}.
(1)求p、q的值;
(2)求不等式$\frac{{{x^2}+px+q}}{{{x^2}-x-6}}$≥0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PD⊥平面ABCD,M是PC的中点,且PD=2
(1)求证:AP∥平面MBD; 
(2)求证:DM⊥BC;
(3)求三棱锥M-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(x+$\root{3}{x}$).求:
(1)f(-8);
(2)f(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了准备里约奥运会的选拔,甲、乙两人进行队内射箭比赛,各射4支箭,两人4次所得环数如表:(最高为10环)
6699
79xy
(Ⅰ)已知在乙的4支箭中随机选取1支时,此支射中环数小于6环的概率不为零,且在4支箭中,乙的平均环数高于甲的平均环数,求x+y的值;
(Ⅱ)如果x=6,y=10,从甲、乙两人的4次比赛中随机各选取1次,并将其环数分别记为a,b,求a≥b的概率;
(Ⅲ)在4次比赛中,若甲、乙两人的平均环数相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)

查看答案和解析>>

同步练习册答案