精英家教网 > 高中数学 > 题目详情
16.双曲线${y^2}-\frac{x^2}{3}=1$的准线方程是y=$±\frac{1}{2}$.

分析 直接利用双曲线方程求解双曲线的准线方程即可.

解答 解:双曲线${y^2}-\frac{x^2}{3}=1$,可得a=1,b=$\sqrt{3}$,c=2,双曲线的准线方程为:y=±$\frac{1}{2}$.
故答案为:y=$±\frac{1}{2}$.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在如图(1)的平面图形中,ABCD为正方形,CDP为等腰直角三角形,E、F、G分别是PC、PD、CB的中点,将△PCD沿CD折起,得到四棱锥P-ABCD如图(2).
求证:在四棱锥P-ABCD中,AP∥平面EFG.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知不等式组$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$表示的平面区域为D,若存在x0∈D,使得y=2x0+$\frac{m{x}_{0}}{|{x}_{0}|}$,则实数m的取值范围是[-4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直线x=a分别与曲线y=2x+1,y=x+lnx交于A,B,则|AB|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD⊥底面ABCD,PA⊥PC;
(1)求证:平面PAB⊥平面PCD;
(2)若过点B的直线l垂直平面PCD,求证:l∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x),g(x)是定义在R上的一个奇函数和偶函数,且f(x-1)+g(x-1)=2x,则函数f(x)=2x-2-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知P(x,y)为区域$\left\{\begin{array}{l}(x-y)(x+y)≥0\\-1≤x≤1\end{array}\right.$内的任意一点,A(2,1),则$\overrightarrow{OA}•\overrightarrow{OP}$的最大值,最小值分别为(  )
A.3,-3B.1,-3C.1,-1D.3,-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C:x2=2py(p>0),直线l:y=-2,且抛物线的焦点到直线l的距离为3.
(Ⅰ)求抛物线的方程;
(Ⅱ)动点P在直线l上,过P点作抛物线的切线,切点分别为A,B,线段AB的中点为Q,证明:PQ⊥x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知等腰梯形ABCD中,AD∥BC,BC=2AD=2AB=4,将△ABD沿BD折到△A′BD的位置,使平面A′BD⊥平面CBD.
(Ⅰ)求证:CD⊥A′B;
(Ⅱ)试在线段A′C上确定一点P,使得二面角P-BD-C的大小为45°.

查看答案和解析>>

同步练习册答案