精英家教网 > 高中数学 > 题目详情
如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6c m的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为
 
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.
解答: 解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,
组合体体积是:32π•2+22π•4=34π.
底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π
切削掉部分的体积与原来毛坯体积的比值为:
54π-34π
54π
=
10
27

故答案为:
10
27
点评:本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
9
+
y2
4
=1的左、右焦点分别是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使|PQ|=|PF2|,那么动点Q的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程|x2-4x|-a=0有四个不相等的实根,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出的结果为(  )
A、4B、9C、7D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

用一些棱长是1cm的小正方体堆放成一个几何体,其正视图和俯视图如图所示,则这个几何体的体积最多是(  )
A、6 cm3
B、7 cm3
C、8 cm3
D、9 cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

两条不重合的直线m,n以及两个平面α,β,给出下列命题:
①若m∥α,n∥α,则m∥n;
②若m∥α,n⊥α,则m⊥n;
③若m∥n,n∥α,则m∥α;
④若m⊥α,m∥β,则α⊥β;
其中真命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:函数f(x)=-
3
x
+1在区间(-∞,0)上是单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px的焦点与椭圆
x2
6
+
y2
2
=1的右焦点重合,则P的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程
2x+3
2
-x=
9x-5
3
+1去分母得(  )
A、3(2x+3)-x=2(9x-5)+6
B、3(2x+3)-6x=2(9x-5)+1
C、3(2x+3)-x=2(9x-5)+1
D、3(2x+3)-6x=2(9x-5)+6

查看答案和解析>>

同步练习册答案