分析 由已知利用余弦定理可求cosC,利用同角三角函数基本关系式可求sinC,结合三角形面积公式即可求值得解.
解答 解:在△ABC中,∵a=13,b=14,c=15,
∴由余弦定理可得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{169+196-225}{2×13×14}$=$\frac{5}{13}$,
又∵C∈(0,π),可得:sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{12}{13}$,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×13×14×\frac{12}{13}$=84.
故答案为:84.
点评 本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 函数g(x)=2sin(x+$\frac{π}{3}$) | B. | 函数g(x)的周期为π | ||
| C. | 函数g(x)的一个对称中心为点(-$\frac{π}{12}$,0) | D. | 函数g(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上单调递增 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{2}{5}$+$\frac{4}{5}$i | B. | $\frac{2}{5}$+$\frac{4}{5}$i | C. | $\frac{2}{5}$-$\frac{4}{5}$i | D. | -$\frac{2}{5}$-$\frac{4}{5}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com