精英家教网 > 高中数学 > 题目详情
8.在50张奖券中,有3张中奖券,现从中任抽2张,至少有1张中奖的概率为(  )
A.$\frac{{C}_{3}^{2}}{{C}_{50}^{2}}$B.$\frac{{C}_{3}^{1}{C}_{47}^{1}}{{C}_{50}^{2}}$C.$\frac{{C}_{47}^{2}}{{C}_{50}^{2}}$D.1-$\frac{{C}_{47}^{2}}{{C}_{50}^{2}}$

分析 根据互斥事件概率公式计算即可.

解答 解:现从中任抽2张,至少有1张中奖的概率1-$\frac{{C}_{47}^{2}}{{C}_{50}^{2}}$,
故选:D.

点评 本题考查了互斥事件概率公式,关键是掌握至少的概念,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.三个人互换座位,则不同的换法有2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.六个人从左到右排成一行,最右端只能排甲或乙,最左端不能排乙,则不同的排法种数共有(  )
A.192B.216C.240D.288

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园,种植桃树,已知角A为120°.现在边界AP,AQ处建围墙,PQ处围栅栏.
(1)若∠APQ=15°,AP与AQ两处围墙长度和为100($\sqrt{3}$+1)米,求栅栏PQ的长;
(2)已知AB,AC的长度均大于200米,若水果园APQ面积为2500$\sqrt{3}$平方米,问AP,AQ长各为多少时,可使三角形APQ周长最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知0<β<α<$\frac{π}{2}$,tanα=4$\sqrt{3}$,cos(α-β)=$\frac{13}{14}$.
(1)求sin2α的值;
(2)求β的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设点P(x,y)满足:$\left\{\begin{array}{l}{x+y-3≤0}\\{x≥1}\\{y≥1}\end{array}\right.$,则$\frac{y}{x}$的取值范围是[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若(3x-$\frac{1}{\root{3}{{x}^{2}}}$)n的二项式系数和为64,则展开式中含有x的项为-540x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,BC=2,AB+AC=6,若AB=x,AD=y,D为BC的中点,试建立y与x的函数关系,并指出定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且MN⊥AM,若侧棱SA=2$\sqrt{3}$,则此正三棱锥S-ABC的外接球的体积是(  )
A.12πB.32πC.36πD.48π

查看答案和解析>>

同步练习册答案