精英家教网 > 高中数学 > 题目详情
6.在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且MN⊥AM,若侧棱SA=2$\sqrt{3}$,则此正三棱锥S-ABC的外接球的体积是(  )
A.12πB.32πC.36πD.48π

分析 由题意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积.

解答 解:∵M,N分别为棱SC,BC的中点,∴MN∥SB
∵三棱锥S-ABC为正棱锥,
∴SB⊥AC(对棱互相垂直)
∴MN⊥AC
又∵MN⊥AM,而AM∩AC=A,
∴MN⊥平面SAC,
∴SB⊥平面SAC
∴∠ASB=∠BSC=∠ASC=90°
以SA,SB,SC为从同一定点S出发的正方体三条棱,
将此三棱锥补成以正方体,则它们有相同的外接球,
正方体的对角线就是球的直径.
∴2R=$\sqrt{3}$SA=6,
∴R=3,
∴V=$\frac{4}{3}$πR3=36π.
故选:C.

点评 本题考查了三棱锥的外接球的体积,考查空间想象能力.三棱锥扩展为正方体,它的对角线长就是外接球的直径,是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在50张奖券中,有3张中奖券,现从中任抽2张,至少有1张中奖的概率为(  )
A.$\frac{{C}_{3}^{2}}{{C}_{50}^{2}}$B.$\frac{{C}_{3}^{1}{C}_{47}^{1}}{{C}_{50}^{2}}$C.$\frac{{C}_{47}^{2}}{{C}_{50}^{2}}$D.1-$\frac{{C}_{47}^{2}}{{C}_{50}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设A={x|x=n,n∈Z},B={x|x=$\frac{n}{2}$,n∈Z},C={x|x=n+$\frac{1}{2}$,n∈Z},那么正确的(  )
A.A=BB.B=A∪CC.B=A∩CD.B⊆C

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,E为AD上一点,F为PC上一点,四边形BCDE为矩形,∠PAD=60°,PB=2$\sqrt{3}$,PA=ED=2AE=2.
(1)若$\overrightarrow{PF}$=λ$\overrightarrow{PC}$(λ∈R),且PA∥平面BEF,求λ的值;
(2)求证:PE⊥平面ABCD;
(3)求直线PB与平面ABCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在三棱锥S-ABC中,侧棱SC⊥平面ABC,SA⊥BC,SC=1,AC=2,BC=3,则此三棱锥的外接球的表面积为(  )
A.14πB.12πC.10πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线l:y=kx-1与曲线C:(x2+y2-4x+3)y=0有且仅有2个不同的交点,则实数k的取值范围是(  )
A.$(0,\frac{4}{3})$B.$(0,\frac{4}{3}]$C.$\{\frac{1}{3},1,\frac{4}{3}\}$D.$\{\frac{1}{3},1\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\frac{ax+b}{{1+{x^2}}}$是定义在(-1,1)上的奇函数,且f($\frac{1}{2}$)=$\frac{2}{5}$,则不等式f(t-1)+f(t)<0的解集为(  )
A.(0,1)B.(0,$\frac{1}{2}$]C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.用辗转相除法求两个数102、238的最大公约数是(  )
A.38B.34C.28D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l:x-y=1与圆Γ:x2+y2-2x+2y-1=0相交于A,C两点,点B,D分别在圆Γ上运动,且位于直线l的两侧,则四边形ABCD面积的最大值为(  )
A.$\sqrt{30}$B.$2\sqrt{30}$C.$\sqrt{51}$D.$2\sqrt{51}$

查看答案和解析>>

同步练习册答案