精英家教网 > 高中数学 > 题目详情
4.在△ABC中,内角A,B,C所对边分别为a、b、c,其中A=120°,b=1,且△ABC的面积为$\sqrt{3}$,则$\frac{a-b}{sinA-sinB}$=(  )
A.$\sqrt{21}$B.$\frac{2\sqrt{29}}{3}$C.2$\sqrt{21}$D.2$\sqrt{7}$

分析 利用三角形的面积公式表示出三角形ABC的面积,将sinA与b的值,以及已知面积代入求出c的长,再由b,c及cosA的值,利用余弦定理求出a的长,由a与sinA的值,利用正弦定理求出三角形外接圆的半径R,利用正弦定理及比例的性质即可求出所求式子的值.

解答 解:∵S△ABC=$\frac{1}{2}$bcsin120°=$\sqrt{3}$,即$\frac{1}{2}$c×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∴c=4,
∴由余弦定理得:a2=b2+c2-2bccos120°=21,
解得:a=$\sqrt{21}$,
∵$\frac{a}{sinA}=\frac{b}{sinB}=2R$,
∴2R=$\frac{a}{sinA}$=$\frac{\sqrt{21}}{\frac{\sqrt{3}}{2}}$=2$\sqrt{7}$,
则$\frac{a-b}{sinA-sinB}$=2R=2$\sqrt{7}$.
故选:D.

点评 此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{{a{x^2}}}{lnx}$在x=e处的切线经过点(1,e).(e=2.71828…)
(Ⅰ)求函数f(x)在[${e^{\frac{1}{4}}}$,e]上的最值;
(Ⅱ)若方程g(x)=tf(x)-x在$[\frac{1}{e},1)∪(1,{e^2}]$上有两个零点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=$\frac{(x+\frac{1}{2})^{0}}{|x|-x}$的定义域是(-∞,$-\frac{1}{2}$)∪($-\frac{1}{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)是定义域为R的单调函数,且对任意的x∈R,都有f[f(x)-ex]=1,则函数g(x)=$\frac{f(x)+f(-x)}{f(x)-f(-x)}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=$\frac{x}{\sqrt{1+{x}^{2}}}$,求f[f(x)].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若集合A={x|y=$\sqrt{4-{x}^{2}}$},集合B={y|y=$\sqrt{4-{x}^{2}}$},则A∪B={x|-2≤x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点P是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上一点,F1、F2分别为双曲线的左、右焦点.
(1)证明:△PF1F2的内切圆的圆心的横坐标为a;
(2)若点M(a,2),且$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{M{F}_{1}}}{|\overrightarrow{P{F}_{1}}|}$=$\frac{\overrightarrow{{{F}_{2}F}_{1}}•\overrightarrow{M{F}_{1}}}{|\overrightarrow{{F}_{2}{F}_{1}}|}$,求△PMF1、与△PMF2的面积之差.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.侧棱长是2的正三棱锥,其底面边长是1,则棱锥的高是$\frac{\sqrt{33}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=ex+ln(x+1)-ax.
(1)当a=2时,判断函数f(x)在定义域内的单调性;
(2)当x≥0时,f(x)≥cosx恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案