精英家教网 > 高中数学 > 题目详情

已知在△ABC中,角A、B、C所对的边分别为a,b,c,且数学公式
(1)求角B的大小;
(2)设向量数学公式取最大值时,tanC的值.

解:(1)由题意…(1分)
所以…(3分)
∵0<A<π,∴…(4分)
∵0<B<π,∴…(5分)
(2)∵(3)…(6分)
…(7分)
所以当时,取最大值.…(8分)
此时…(9分)
…(10分)
分析:(1)根据所给的三角函数的关系式,利用正弦定理和两角和的正弦公式,和诱导公式,做出角B的余弦值,根据角的范围求出角的大小.
(2)先表达出两个向量的数量积,整理出关于cosA的二次函数形式,看出函数的最大值,根据同角的三角函数之间的关系得到结果.
点评:本题考查正弦定理的应用,考查三角函数的化简求值,考查向量数量积的运算,本题解题的关键是整理出关于角A的余弦的二次函数求出最值,本题是一个中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•吉安县模拟)已知在△ABC中,角A、B、C的对边长分别为a、b、c,已知向量
m
=(sinA+sinC,sinB-sinA),
n
=(sinA-sinC,sinB),且
m
n

(1)求角C的大小;
(2)若a2=b2+
1
2
c2
,试求sin(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,
3
4
),
b
=(cos(x+
π
3
),1)函数f(x)=
a
b

(1)求f(x)的最值和单调递减区间;
(2)已知在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=0,a=
3
,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A,B,C的对边分别为a,b,c,且角A,B,C成等差数列,若边a,b,c成等比数列,求sinA•sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A,B,C所对的边分别为a,b,c,其长度分别为3,4,5,则
AB
BC
+
BC
CA
=
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•泸州二模)已知在△ABC中,角A、B、C的对边分别是a、b、c,且tanB=
2-
3
a2+c2-b2
BC
BA
=
1
2

(Ⅰ)求tanB的值;
(Ⅱ)求
2sin2
B
2
+2sin
B
2
cos
B
2
-1
cos(
π
4
-B)
的值.

查看答案和解析>>

同步练习册答案