精英家教网 > 高中数学 > 题目详情
16.在△ABC中,sinA:sinB:sinC=4:5:7,则此三角形是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.不能确定

分析 由正弦定理可得a:b:c=4:5:7,进而可用c表示b,a,代入余弦定理化简可得cosC=-$\frac{1}{5}$<0,利用余弦函数的图象和性质即可得解.

解答 解:在△ABC中,∵sinA:sinB:sinC=4:5:7,
∴由正弦定理可得a:b:c=4:5:7,
∴b=$\frac{5c}{7}$,a=$\frac{4c}{7}$,
∴由余弦定理可得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{(\frac{4c}{7})^{2}+(\frac{5c}{7})^{2}-{c}^{2}}{2×\frac{4c}{7}×\frac{5c}{7}}$=-$\frac{1}{5}$<0,
∴C∈($\frac{π}{2}$,π),可得此三角形是钝角三角形.
故选:B.

点评 本题考查正、余弦定理在解三角形中的应用,用c表示b,a是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知各项均为正数的等差数列{an}的公差为d,其前n项和为sn,a1=2且a1,a2,a3+2成等比数列.
(1)求公差d和an; 
(2)令bn=$\frac{1}{s_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若直线y=kx+1(k>0)是曲线$y=\sqrt{x}$的切线,则k=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数$f(x)=\left\{\begin{array}{l}|{{{log}_2}x}|,0<x<2\\ sin({\frac{π}{4}x}),2≤x≤10\end{array}\right.$,若存在实数x1,x2,x3,x4,满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则$\frac{{({{x_3}-1})({{x_4}-1})}}{{{x_1}{x_2}}}$的取值范围是(9,21).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设x,y,满足约束条件$\left\{\begin{array}{l}{3x-y-2≤0}\\{x-y≥0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=ax+by(a>1,b>2)的最大值为5,则$\frac{1}{a-1}+\frac{4}{b-2}$的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)某省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布N(170.5,16)现从该省某校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第一组[157.5,162.5]第二组[162.5,167.5],…第6组[182.5,187.5],如图是按上述分组方法得到的频率分布直方图.
(1)求该学校高三年级男生的平均身高;
(2)求这50名男生身高在177.5cm以上(含177.5cm)的人数;
(3)在这50名男生身高在177.5cm以上含(177.5cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全省前130名的人数记为ξ,求ξ的数学期望.
参考数据:
若ξ~N(μ,σ2).则P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,已知A-C=$\frac{π}{2}$,cosB=$\frac{2\sqrt{2}}{3}$.
(1)求sinC的值;
(2)若AC=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.以下说法正确的有①③
①若f(x+2)=f(x-2),x∈R,则函数y=f(x)是周期函数;
②若f(x+2)=-f(x),x∈R,则函数y=f(x)不一定是周期函数;
③若f(x+2)=-f(x),x∈R,且f(x)是奇函数,则直线x=5是函数y=f(x)的一条对称轴;
④若f(x+2)=2f(x),x∈R,且x∈[-1,1]时,$f(x)=cos\frac{πx}{2}$,函数$g(x)=\left\{\begin{array}{l}{e^x},\;\;\;x≤0\\ lnx,x>0\end{array}\right.$,则函数y=f(x)-g(x)在区间[-3,3]上有4个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=$\left\{\begin{array}{l}{x-[x]\;\;\;\;\;\;\;x≥0}\\{f(x+1)\;\;\;\;\;x<0}\end{array}\right.$其中[x]表示不超过x的最大整数,如[-1.3]=-2,[1.3]=1,则函数y=f(x)-$\frac{1}{6}$x-$\frac{1}{6}$不同零点的个数(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案