| A. | 锐角三角形 | B. | 钝角三角形 | C. | 直角三角形 | D. | 不能确定 |
分析 由正弦定理可得a:b:c=4:5:7,进而可用c表示b,a,代入余弦定理化简可得cosC=-$\frac{1}{5}$<0,利用余弦函数的图象和性质即可得解.
解答 解:在△ABC中,∵sinA:sinB:sinC=4:5:7,
∴由正弦定理可得a:b:c=4:5:7,
∴b=$\frac{5c}{7}$,a=$\frac{4c}{7}$,
∴由余弦定理可得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{(\frac{4c}{7})^{2}+(\frac{5c}{7})^{2}-{c}^{2}}{2×\frac{4c}{7}×\frac{5c}{7}}$=-$\frac{1}{5}$<0,
∴C∈($\frac{π}{2}$,π),可得此三角形是钝角三角形.
故选:B.
点评 本题考查正、余弦定理在解三角形中的应用,用c表示b,a是解决问题的关键,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com