精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax(a>0,a≠1)在区间[﹣1,1]上的最大值与最小值的差是1,则实数a的值为

【答案】
【解析】解:当a>1时,y=ax在[﹣1,1]上单调递增,

∴当x=﹣1时,y取到最小值a﹣1,当x=1时,y取到最大值a,

∴a﹣a﹣1=1,

解得a=

当0<a<1时,y=ax在[﹣1,1]上单调递减,

∴当x=﹣1时,y取到最大值a﹣1,当x=1时,y取到最小值a,

∴a﹣1﹣a=1,

解得a=

所以答案是:

【考点精析】本题主要考查了指数函数的图像与性质的相关知识点,需要掌握a0=1, 即x=0时,y=1,图象都经过(0,1)点;ax=a,即x=1时,y等于底数a;在0<a<1时:x<0时,ax>1,x>0时,0<ax<1;在a>1时:x<0时,0<ax<1,x>0时,ax>1才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】x∈R,则f(x)与g(x)表示同一函数的是( )
A.f(x)=x2
B.f(x)=1,g(x)=(x﹣1)0
C.
D. ,g(x)=x﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= (x∈R,且x≠﹣1),g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f(g(2)),g(f(2))的值;
(3)求f(g(x)).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在R上的偶函数,当x≤﹣1时,f(x)=x+b,且f(x)的图象经过点(﹣2,0),在y=f(x)的图象中有一部分是顶点为(0,2),过点(﹣1,1)的一段抛物线.
(1)试求出f(x)的表达式;
(2)求出f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数在其定义域上既是奇函数又是减函数的是(
A.f(x)=2x
B.f(x)=xsinx
C.
D.f(x)=﹣x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为D,若满足①f(x)在D内是单调函数,②存在[a,b]D,使f(x)在[a,b]上的值域为[a,b],那么y=f(x)叫做闭函数,现有f(x)= +k是闭函数,那么k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工科院校对A,B两个专业的男女生人数进行调查,得到如下的列联表:

专业A

专业B

总计

女生

12

4

16

男生

38

46

84

总计

50

50

100

(Ⅰ)从B专业的女生中随机抽取2名女生参加某项活动,其中女生甲被选到的概率是多少?
(Ⅱ)能否在犯错误的概率不超过0.05的前提下,认为工科院校中“性别”与“专业”有关系呢?
注:

P(K2≥k)

0.25

0.15

0.10

0.025

k

1.323

2.072

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}前n项和为Sn , 首项为a1 , 且 ,an , Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2a3n+1)×(log2a3n+4),求证: + + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设D是函数y=f(x)定义域内的一个子区间,若存在x0∈D,使f(x0)=﹣x0 , 则称x0是f(x)的一个“开心点”,也称f(x)在区间D上存在开心点.若函数f(x)=ax2﹣2x﹣2a﹣ 在区间[﹣3,﹣ ]上存在开心点,则实数a的取值范围是(
A.(﹣∞,0)
B.[﹣ ,0]
C.[﹣ ,0]
D.[﹣ ,﹣ ]

查看答案和解析>>

同步练习册答案