精英家教网 > 高中数学 > 题目详情
6.在△ABC中,角A、B、C对边分别是a、b、c,且满足$2\overrightarrow{AB}•\overrightarrow{AC}={a^2}-{(b-c)^2}$.
(Ⅰ)求角A的大小
(Ⅱ)若a=4,△ABC的面积为$4\sqrt{3}$,求b,c.

分析 (I)由题意可得2bccosA=a2-b2-c2-2bc,再由余弦定理求出cosA,从而确定A的大小;
(II)利用三角形的面积公式S=$\frac{1}{2}$bcsinA得bc=16;再由余弦定理得b2+c2+bc=48,联立求出b、c.

解答 (本题满分为12分)
解:(Ⅰ)由题意可得2bccosA=a2-b2-c2+2bc,
由余弦定理a2=b2+c2-2bccosA得4bccosA=2bc,
∴cosA=$\frac{1}{2}$,
∵0<A<π,
∴A=$\frac{π}{3}$…6分
(Ⅱ)∵sinA=$\frac{\sqrt{3}}{2}$,cosA=$\frac{1}{2}$,a=4,
∴S=$\frac{1}{2}$bcsinA=4$\sqrt{3}$,
∴bc=16,
∴a2=b2+c2-2bccosA?b2+c2-16=16,可得:b+c=8,
∴b=c=4…12分

点评 本题考查余弦定理的应用,考查三角形的面积公式的应用,结合题设条件,利用余弦定理求出角A的大小是解答本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知f(x)=$\left\{\begin{array}{l}3{e}^{x-1},x<3\\ lo{g}_{3}({x}^{2}-6),x≥3\end{array}\right.$,则f(f($\sqrt{15}$))的值为3e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示,酒杯的杯体轴截面是抛物线x2=2py (p>0)的一部分,若将半径为r(r>0)的玻璃球放入杯中,可以触及酒杯底部(即抛物线的顶点),则r的最大值为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.以下命题中:
①从匀速传递的产品流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;
③已知随机变量ξ+η=8,若ξ~B(10,0.6),则Eη,Dη分别是2和2.4;
④设随机变量ξ服从正态分布N(3,7),若P(ξ>a+2)=P(ξ<a-2),则a=2;
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xoy中,椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且$|{M{F_2}}|=\frac{5}{3}$.
(1)求C1的方程;
(2)在C1上任取一点P,过点P作x轴的垂线段PD,D为垂足,若动点N满足$\overrightarrow{DP}=\frac{{\sqrt{3}}}{2}\overrightarrow{DN}$,当点P在C1上运动时,求点N的轨迹E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=2x2-ax+5在区间[1,+∞)上是单调递增函数,则实数a的取值范围是(  )
A.(-∞,4]B.(-∞,4)C.[4,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设Sn是等差数列{an}的前n项和,若a4+a7+a10=21,则S13=(  )
A.100B.91C.81D.71

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.把函数y=sin(x+$\frac{π}{6}$)图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将图象向右平移$\frac{π}{3}$个单位,那么所得图象的一条对称轴为(  )
A.x=$\frac{π}{4}$B.x=$\frac{π}{2}$C.x=$\frac{π}{6}$D.x=π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图是从成都某中学参加高三体育考试的学生中抽出的60名学生体育成绩(均为整数)的频率分布直方图,该直方图恰好缺少了成绩在区间[70,80)内的图形,根据图形的信息,回答下列问题:
(1)求成绩在区间[70,80)内的频率,并补全这个频率分布直方图;并估计这次考试的及格率(60分及以上为及格);
(2)假设成绩在[80,90)内的学生中有$\frac{2}{3}$的成绩在85分以下,从成绩在[80,90)内的学生中选出三人,记在85分以上(含85分)的人数为X,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案