精英家教网 > 高中数学 > 题目详情
3.已知f(x)是奇函数,且对于任意x∈R满足f(2-x)=f(x),当0<x≤1时,f(x)=lnx+2,则函数y=f(x)在(-2,4]上的零点个数是(  )
A.7B.8C.9D.10

分析 由函数f(x)是奇函数且满足f(2-x)=f(x)知,f(x)是周期为4的周期函数,且关于直线x=1+2k(k∈R)成轴对称,关于点(2k,0)(k∈Z)成中心对称,再求出函数的零点,即可得出结论.

解答 解:由函数f(x)是奇函数且满足f(2-x)=f(x)知,f(x)是周期为4的周期函数,
且关于直线x=1+2k(k∈R)成轴对称,关于点(2k,0)(k∈Z)成中心对称.
当0<x≤1时,令f(x)=lnx+2=0,得x=$\frac{1}{{e}^{2}}$,由此得y=f(x)在(-2,4]上的零点分别为-2+$\frac{1}{{e}^{2}}$,-$\frac{1}{{e}^{2}}$,0,$\frac{1}{{e}^{2}}$,2-$\frac{1}{{e}^{2}}$,2,2+$\frac{1}{{e}^{2}}$,-$\frac{1}{{e}^{2}}$+4,4共9个零点.
故选C.

点评 本题考查函数的奇偶性、对称性,考查函数的零点,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=x3+(k-1)x2+(k+5)x-1在区间(0,2)上不单调,则实数k的取值范围为(-5,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.关于函数y=sin2x的判断,正确的是(  )
A.最小正周期为2π,值域为[-1,1],在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上是单调减函数
B.最小正周期为π,值域为[-1,1],在区间[0,$\frac{π}{2}$]上是单调减函数
C.最小正周期为π,值域为[0,1],在区间[0,$\frac{π}{2}$]上是单调增函数
D.最小正周期为2π,值域为[0,1],在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上是单调增函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列说法:①分类变量A与B的随机变量k2越大,说明“A与B有关系”的可信度越大②以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,将其变换后得到线性方程z=0.3x+4,则c,k的值分别是e4和0.3③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y=a+bx中,b=2,$\overline x=1$,$\overline y=3$,则a=1.正确的有①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x3+ax2+bx-1在区间[0,1]上单调递减,m=a+b,则m的取值范围是(  )
A.(-∞,-$\frac{3}{2}$]B.[-$\frac{3}{2}$,+∞)C.(-∞,-3]D.[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i是虚数单位,复数z=(4+i)+(-3-2i)的虚部是(  )
A.1B.$\sqrt{2}$C.-1D.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=ax3+ax2-x+1在实数R上是减函数,则实数a的取值范围是(  )
A.[-2,-1]B.[0,3]C.[-3,0]D.(-3,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.我县从2011年起每年国庆期间都举办一届湖北蕲春中国汽车场地越野大奖赛,到2016年已举办了六届,旅游部门统计在每届节会期间,吸引了不少外地游客到蕲春,这将极大地推进蕲春的旅游业的发展,现将前五届蕲春中国汽车场地越野大奖赛期间外地游客到蕲春的人数统计如表:
年份2011年2012年2013年2014年2015年
汽车越野赛届编号x12345
外地游客人数y(单位:十万)0.60.80.91.21.5
(1)求y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)旅游部门统计在每届节会期间,每位外地游客可为本市县加100元左右的旅游收入,利用(1)中的线性回归方程,预测2017年第7届湖北蕲春汽车场地越野大奖赛期间外地游客可为本县增加的旅游收入达多少?参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=0}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x∈R||x|≤2},B={x∈Z|x2≤1},则A∩B=(  )
A.[-1,1]B.[-2,2]C.{-1,0,1}D.{-2,-1,0,1,2}

查看答案和解析>>

同步练习册答案