精英家教网 > 高中数学 > 题目详情

已知函数.
(Ⅰ)若曲线处的切线互相平行,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得,求的取值范围.

(Ⅰ);(2)单调递增区间是,单调递减区间是;(3)

解析试题分析:(Ⅰ)由函数,得,又由曲线处的切线互相平行,则两切线的斜率相等地,即,因此可以得到关于的等式,从而可求出.
(Ⅱ)由,令,则,因此需要对与0,,2比较进行分类讨论:①当时,在区间上有,在区间上有;②当时,在区间上有,在区间上有;③当时,有;④当时,区间上有,在区间上有,综上得的单调递增区间是,单调递减区间是.
(Ⅲ)由题意可知,在区间上有函数的最大值小于的最大值成立,又函数上的最大值,由(Ⅱ)知,①当时,上单调递增,故,所以,,解得,故;②当时,上单调递增,在上单调递减,,由可知,所以,;综上所述,所求的范围为.
试题解析:.                                 2分
(Ⅰ),解得.                                    3分
(Ⅱ).                                5分
①当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,求证:当时,
(2)若在区间上单调递增,试求的取值范围;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,现要在边长为的正方形内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为不小于)的扇形花坛,以正方形的中心为圆心建一个半径为的圆形草地.为了保证道路畅通,岛口宽不小于,绕岛行驶的路宽均不小于.

(1)求的取值范围;(运算中
(2)若中间草地的造价为,四个花坛的造价为,其余区域的造价为,当取何值时,可使“环岛”的整体造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若处相切,试求的表达式;
(Ⅱ)若上是减函数,求实数的取值范围;
(Ⅲ)证明不等式: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数.
(1)求函数的零点;
(2)若对任意均有两个极值点,一个在区间内,另一个在区间外,
的取值范围;
(3)已知且函数上是单调函数,探究函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是二次函数,不等式的解集是,且在点处的切线与直线平行.
(1)求的解析式;
(2)是否存在t∈N*,使得方程在区间内有两个不等的实数根?
若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=在x=0,x=处存在极值。
(Ⅰ)求实数a,b的值;
(Ⅱ)函数y=f(x)的图象上存在两点A,B使得△AOB是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,求实数c的取值范围;
(Ⅲ)当c=e时,讨论关于x的方程f(x)=kx(k∈R)的实根个数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)已知函数
(1)若,求曲线在点处的切线方程;
(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义函数阶函数.
(1)求一阶函数的单调区间;
(2)讨论方程的解的个数;
(3)求证:.

查看答案和解析>>

同步练习册答案