【题目】一个正方形被剖分为4个正方形,剖分图的边数为12.若一个正方形被剖分为2005个凸多边形,试求剖分图中边数的最大值.
【答案】正方形剖分为2005个凸多边形时,边的最大值为6016.
【解析】
由欧拉定理可知,简单多面体的顶点数
、面数
、棱数
有如下关系:
.
由欧拉定理容易看出,若一个凸多边形被剖分为
个凸多边形,则剖分图中的顶点数
、多边形数
、边数
满足
. ①
下面在一般的情况下,即正方形被剖分为
个凸多边形时,求剖分图中边数的最大值.设剖分图中的顶点数为
、多边形数为
、边数为
.
(1)先求边数的上界.
设原正方形的4个顶点是
、
、
、
.若凸多边形的顶点
,则易知
(这里用
表示过顶点
的边数).
故
.
注意到这样的顶点
有
个,于是,有
个上面的不等式.将它们相加求和,并注意到除去正方形四边的每条边恰是两个凸多边形的边,有
![]()
.
即
.
因为
,
,
,
.
则
. ②
由式①有
.
将式②代入式③,并整理得
,即
.
(2)构造例子,使边数
.
如图,过正方形的一边相继作
条邻边的平行线,正方形被剖分为
个矩形,易知,边数
.
综上所述,剖分图中边数的最大值为
.
所以,正方形剖分为2005个凸多边形时,边的最大值为6016.
![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,短轴长为
.
(1)求椭圆
的标准方程;
(2)若椭圆
的左焦点为
,过点
的直线
与椭圆
交于
两点,则在
轴上是否存在一个定点
使得直线
的斜率互为相反数?若存在,求出定点
的坐标;若不存在,也请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△
的三个内角
、
、
所对应的边分别为
、
、
,复数
,
,(其中
是虚数单位),且
.
(1)求证:
,并求边长
的值;
(2)判断△
的形状,并求当
时,角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=
,PA=AD=2,AB=BC=1,点M、E分别是PA、PD的中点
![]()
(1)求证:CE//平面BMD
(2)点Q为线段BP中点,求直线PA与平面CEQ所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,在
处的切线方程为
.
(1)求
,
;
(2)若
,证明:
.
【答案】(1)
,
;(2)见解析
【解析】试题分析:(1)求出函数的导数,得到关于
的方程组,解出即可;
(2)由(1)可知
,
,
由
,可得
,令
, 利用导数研究其单调性可得
,
从而证明
.
试题解析:((1)由题意
,所以
,
又
,所以
,
若
,则
,与
矛盾,故
,
.
(2)由(1)可知
,
,
由
,可得
,
令
,
,
令![]()
当
时,
,
单调递减,且
;
当
时,
,
单调递增;且
,
所以
在
上当单调递减,在
上单调递增,且
,
故
,
故
.
【点睛】本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.
【题型】解答题
【结束】
22
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,若直线
与曲线
相切;
(1)求曲线
的极坐标方程;
(2)在曲线
上取两点
,
与原点
构成
,且满足
,求面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:
每月完成合格产品的件数(单位:百件) |
|
|
|
|
|
频数 | 10 | 45 | 35 | 6 | 4 |
男员工人数 | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格产品的件数不少于3200件的员工被评为“生产能手”.由以上统计数据填写下面
列联表,并判断是否有95%的把握认为“生产能手”与性别有关?
非“生产能手” | “生产能手” | 合计 | |
男员工 | |||
span>女员工 | |||
合计 |
(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的,计件单价为1元;超出
件的部分,累进计件单价为1.2元;超出
件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段中各段的频率视为相应的概率,在该厂男员工中选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3100元的人数为,求的分布列和数学期望.
附:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①函数
与函数
表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数
的图象可由
的图象向右平移1个单位得到;
④若函数
的定义域为
,则函数
的定义域为
;
⑤设函数
是在区间
上图象连续的函数,且
,则方程
在区间
上至少有一实根.
其中正确命题的序号是________.(填上所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中华人民共和国民法总则》(以下简称《民法总则》)自2017年10月1日起施行.作为民法典的开篇之作,《民法总则》与每个人的一生息息相关.某地区为了调研本地区人们对该法律的了解情况,随机抽取50人,他们的年龄都在区间
上,年龄的频率分布及了解《民法总则》的入数如下表:
年龄 |
|
|
|
|
|
|
频数 | 5 | 5 | 10 | 15 | 5 | 10 |
了解《民法总则》 | 1 | 2 | 8 | 12 | 4 | 5 |
(1)填写下面
列联表,并判断是否有
的把握认为以45岁为分界点对了解《民法总则》政策有差异;
年龄低于45岁的人数 | 年龄不低于45岁的人数 | 合计 | |
了解 |
|
| |
不了解 |
|
| |
合计 |
(2)若对年龄在
,
的被调研人中各随机选取2人进行深入调研,记选中的4人中不了解《民法总则》的人数为
,求随机变量的分布列和数学期望.
参考公式和数据:![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com