精英家教网 > 高中数学 > 题目详情
14.已知偶函数f(x)对任意x∈R满足f(2+x)=f(2-x),且当-3≤x≤0时,f(x)=log3(2-x),则f(2015)的值为(  )
A.-1B.1C.0D.2015

分析 利用已知关系式以及函数的奇偶性求出函数的周期,然后化简所求f(2015)为f(-1),通过函数表达式求出函数值即可.

解答 解:∵f(2+x)=f(2-x),∴f(4+x)=f(-x).
∵f(x)为偶函数,∴f(x)=f(-x),∴f(x)=f(x+4),
函数的周期为:4,
∴f(2015)=f(4×504-1)=f(-1)=log33=1.
故选:B.

点评 本题考查抽象函数的应用,函数的奇偶性以及函数的周期性的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.集合A={-2,-1,3,4},B={-1,2,3},则A∪B={-2,-1,2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3-3x及曲线y=f(x)上一点P(1,-2),
(I) 求与y=f(x)相切且以P为切点的直线方程;
(Ⅱ)求过点P并与y=f(x)相切且切点异于P点的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)是定义在区间[-1,1]上的奇函数,且f(-1)=1,若m,n∈[-1,1],m+n≠0时,有$\frac{f(m)+f(n)}{m+n}$<0.
(Ⅰ)证明:f(x)在区间[-1,1]上是单调减函数;
(Ⅱ)解不等式f(x+$\frac{1}{2}}$)<f(${\frac{1}{x-1}}$);
(Ⅲ)若f(x)≤t2-mt-1对所有x∈[-1,1],m∈[0,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x2-alnx(常数a>0),函数f(x)在区间(1,ea)上有两个零点,则a的取值范围是(2e,+∞)(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=ax3-bx+1,若f(-1)=3,则f(1)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,三个内角分别为A,B,C,已知sin(A+$\frac{π}{6}$)=2cosA.
(1)求角A的值;
(2)若B∈(0,$\frac{π}{3}$),且cos(A-B)=$\frac{4}{5}$,求sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=sin(2x+φ)(0<φ<π)的图象向右平移$\frac{π}{4}$个单位后与y=sin2x的图象重合,则φ=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x+1)是偶函数,且满足f(x+1)=$\frac{1}{f(x)}$,当2≥x2>x1≥1时,[f(x2)-f(x1)](x2-x1)>0恒成立,设a=f(-2016),b=f(2015),c=f(π),则a,b,c的大小关系为a>c>b.

查看答案和解析>>

同步练习册答案