要制作一个如图的框架(单位:m),要求所围成的总面积为19.5(m2),其中ABCD是一个矩形,EFCD是一个等腰梯形,梯形高h=AB,tan∠FED=,设AB=xm,BC=ym.
(1)求y关于x的表达式;
(2)如何设计x、y的长度,才能使所用材料最少?
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第3课时练习卷(解析版) 题型:填空题
若函数f(x)=ax(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)在[0,+∞)上是增函数,则a=________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第1课时练习卷(解析版) 题型:解答题
判断下列对应是否是从集合A到集合B的函数.
(1) A=B=N*,对应法则f:x→y=|x-3|,x∈A,y∈B;
(2) A=[0,+∞),B=R,对应法则f:x→y,这里y2=x,x∈A,y∈B;
(3) A=[1,8],B=[1,3],对应法则f:x→y,这里y3=x,x∈A,y∈B;
(4) A={(x,y)|x、y∈R},B=R,对应法则:对任意(x,y)∈A,(x,y)→z=x+3y,z∈B.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第14课时练习卷(解析版) 题型:填空题
关于函数f(x)=lg(x>0,x∈R),下列命题正确的是________.(填序号)
①函数y=f(x)的图象关于y轴对称;
②在区间(-∞,0)上,函数y=f(x)是减函数;
③函数y=f(x)的最小值为lg2;
④在区间(1,+∞)上,函数y=f(x)是增函数.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第13课时练习卷(解析版) 题型:解答题
某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线f(x)=1-ax2(a>0)的一部分,栏栅与矩形区域的边界交于点M、N,交曲线于点P,设P(t,f(t)).
(1)将△OMN(O为坐标原点)的面积S表示成t的函数S(t);
(2)若在t=处,S(t)取得最小值,求此时a的值及S(t)的最小值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第13课时练习卷(解析版) 题型:解答题
如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD、AB距离分别为9m、3m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF,MN∶NE=16∶9.线段MN必须过点P,端点M、N分别在边AD、AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).
(1)用x的代数式表示AM;
(2)求S关于x的函数关系式及该函数的定义域;
(3)当x取何值时,液晶广告屏幕MNEF的面积S最小?
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第13课时练习卷(解析版) 题型:填空题
某商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系为P=且该商品的日销售量Q与时间t(天)的函数关系为Q=-t+40(0<t≤30,t∈N),则这种商品日销量金额最大的一天是30天中的第________天.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第12课时练习卷(解析版) 题型:解答题
若函数f(x)=-+blnx在(1,+∞)上是减函数,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第10课时练习卷(解析版) 题型:填空题
若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下:
f(1)=-2 | f(1.5)=0.625 | f(1.25)=-0.984 |
f(1.375)=-0.260 | f(1.4375)=0.162 | f(1.40625)=-0.054 |
那么方程x3+x2-2x-2=0的一个近似根为________(精确到0.1).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com