精英家教网 > 高中数学 > 题目详情
3.已知等腰直角△ABC,AB=AC=4,点P,Q分别在边AB,BC上,$(\overrightarrow{PB}+\overrightarrow{BQ})•\overrightarrow{BC}$=0,$\overrightarrow{PM}=2\overrightarrow{PQ}$,$\overrightarrow{AP}+\overrightarrow{AN}$=$\overrightarrow 0$,直线MN经过△ABC的重心,则|$\overrightarrow{AP}$|=(  )
A.$\frac{4}{3}$B.2C.$\frac{8}{3}$D.1

分析 可作出图形,根据条件便可得出PM⊥BC,Q为PM的中点,可设△ABC的重心为G,则由题意即可得到AG⊥BC,从而有AG∥PM,而由条件可以得到点A为PN的中点,并可求得$AG=\frac{2\sqrt{2}}{3}$,从而便可得到$PQ=\frac{2\sqrt{2}}{3}$,这样由△PBQ为等腰直角三角形即可求出PB的值,而AB=4,从而便可得出$|\overrightarrow{AP}|$的值.

解答 解:如图,设△ABC的重心为G,由条件知BC=$4\sqrt{2}$,△ABC为等腰直角三角形,∴$AG=\frac{2\sqrt{2}}{3}$;

$(\overrightarrow{PB}+\overrightarrow{BQ})•\overrightarrow{BC}=\overrightarrow{PQ}•\overrightarrow{BC}=0$;
∴PQ⊥BC,且$\overrightarrow{PM}=2\overrightarrow{PQ}$;
∴PM⊥BC,且Q为PM的中点;
又AG⊥BC;
∴AG∥PM;
由$\overrightarrow{AP}+\overrightarrow{AN}=\overrightarrow{0}$得,$\overrightarrow{AP}=-\overrightarrow{AN}$;
∴A为PN的中点;
∴PM=2AG;
∴$PQ=AG=\frac{2\sqrt{2}}{3}$;
△PBQ为等腰直角三角形,∠B=45°,∠PQB=90°;
∴$PB=\frac{\frac{2\sqrt{2}}{3}}{\frac{\sqrt{2}}{2}}=\frac{4}{3}$,AB=4;
∴$AP=4-\frac{4}{3}=\frac{8}{3}$;
即$|\overrightarrow{AP}|=\frac{8}{3}$.
故选:C.

点评 考查三角形重心的概念及重心的性质:重心到顶点距离是它到对边中点距离的2倍,向量加法及数乘的几何意义,向量垂直的充要条件,以及三角形中位线的性质,三角函数的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.从一架钢琴挑出的7个音键中,分别选择3个,4个,5个,6个,7个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同和声数为99(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若变量x,y满足约束条件$\left\{\begin{array}{l}{y≤1}\\{x+y≥0}\\{x-y-2≥0}\\{\;}\end{array}\right.$,则z=x-2y的最小值是(  )
A.3B.1C.-3D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点,点A(1,$\frac{\sqrt{3}}{2}$)在椭圆C上,|AF1|+|AF2|=4,则椭圆C的离心率是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱台DEF-ABC中,已知底面ABC是以AB为斜边的直角三角形,FC⊥底面ABC,AB=2DE,G,H分别为AC,BC的中点.
(1)求证:平面ABED∥平面GHF;
(2)若BC=CF=$\frac{1}{2}$AB,求二面角A-DE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=cos(ωx+φ)(ω>0)的图象向右平移$\frac{π}{4}$,与原图象重合,则ω的最小值为(  )
A.4B.6C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知两个单位向量$\overrightarrow{a}$、$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=-$\frac{1}{2}$,向量2$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$的夹角为θ.则cosθ=-$\frac{2\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+2ny-1=0(mn>0)上,求$\frac{1}{m}+\frac{1}{n}$的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.现有两个班级,每班各出4名选手进行羽毛球的男单、女单、男女混合双打(混双)比赛(注:每名选手打只打一场比赛).根据以往的比赛经验,各项目平均完成比赛所需时间如表所示,现只有一块比赛场地,各场比赛的出场顺序等可能.
比赛项目男单女单混双
平均比赛时间25分钟20分钟35分钟
(Ⅰ)求按女单、混双、男单的顺序进行比赛的概率;
(Ⅱ)求第三场比赛平均需要等待多久才能开始进行;
(Ⅲ)若要使所有参加比赛的人等待的总时间最少,应该怎样安排比赛顺序(写出结论即可).

查看答案和解析>>

同步练习册答案