精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是正方形,侧面底面,若分别为的中点.

)求证:平面

)求证:平面平面

【答案】1)根据题意,证明线面平行,关键是先证明线线平行,即

2)对于面面垂直的证明,一般先证明线面垂直,,结合面面垂直的判定定理来得到。

【解析】

(Ⅰ)利用线面平行的判定定理,只需证明EFPA,即可.

(Ⅱ)先证明线面垂直,CD⊥平面PAD,再证明面面垂直,平面PAD⊥平面PDC即可.

)证明:连结AC,在正方形ABCD中,FBD中点,正方形对角线互相平分,

FAC中点,又EPC中点,在CPA中,EFPA,且PA平面PAD

EF平面PADEF平面PAD

平面PAD平面ABCD,平面PAD平面ABCD=ADCDAD

平面 CD⊥平面PAD,∵CD平面PDC ∴平面PAD⊥平面PDC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,对任意满足,且,数列满足,其前9项和为63.

(1)求数列的通项公式;

(2)令,数列的前项和为,若对任意正整数,都有,求实数的取值范围;

(3)将数列的项按照为奇数时,放在前面;当为偶数时,放在前面的要求进行交叉排列,得到一个新的数列:,求这个新数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,现给出如下结论:

.

其中正确结论的序号为(

A. ②③ B. ①④ C. ②④ D. ①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bln x在x=1处有极值.

(1)求a,b的值;

(2)求函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有直线和平面,则下列四个命题中,正确的是( )

A. mαnα,则mnB. mαnαmβlβ,则αβ

C. αβmα,则mβD. αβmβmα,则mα

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的中学生是否爱好运动,得到如下的列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

得,

0.050

0.010

0.001

3.841

6.635

10.828

参照附表,得到的正确结论是 ( )

A. 在犯错误的概率不超过0.001的前提下,认为爱好运动与性别有关

B. 在犯错误的概率不超过0.01的前提下,认为爱好运动与性别有关

C. 在犯错误的概率不超过0.001的前提下,认为爱好运动与性别无关

D. 以上的把握认为爱好运动与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人元,劳务费及耗材费为每人每天元.若安排名人员参与抢修,需要天完成抢修工作.

写出关于的函数关系式;

应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆C: =1(a>b>0)的离心率为 ,其左焦点到点P(2,1)的距离为 ,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.

(1)求椭圆C的方程;
(2)求△APB面积取最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有大小、形状完全相同的四个小球,分别写有和、“谐”、“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生之间取整数值的随机数,分别用代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下组随机数:

由此可以估计,恰好第三次就停止摸球的概率为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案