【题目】已知函数
,函数
的图象与
的图象关于
对称.
(1)若关于
的方程
在
上有解,求实数
的取值范围;
(2)若
,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】如图所示,
是某海湾旅游区的一角,其中
,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸
和
上分别修建观光长廊
和AC,其中
是宽长廊,造价是
元/米,
是窄长廊,造价是
元/米,两段长廊的总造价为120万元,同时在线段
上靠近点
的三等分点
处建一个观光平台,并建水上直线通道
(平台大小忽略不计),水上通道的造价是
元/米.
(1) 若规划在三角形
区域内开发水上游乐项目,要求
的面积最大,那么
和
的长度分别为多少米?
(2) 在(1)的条件下,建直线通道
还需要多少钱?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知甲盒内有大小相同的2个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各取2个球.
(1)求取出的4个球中恰有1个红球的概率;
(2)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的左右焦点分别为的
、
,离心率为
;过抛物线
焦点
的直线交抛物线于
、
两点,当
时,
点在
轴上的射影为
。连结
并延长分别交
于
、
两点,连接
;
与
的面积分别记为
,
,设
.
(Ⅰ)求椭圆
和抛物线
的方程;
(Ⅱ)求
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知点
,动点
到点
的距离比到
轴的距离大1个单位长度.
(1)求动点
的轨迹方程
;
(2)若过点
的直线
与曲线
交于
,
两点,且
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
常数
)满足
.
(1)求出
的值,并就常数
的不同取值讨论函数
奇偶性;
(2)若
在区间
上单调递减,求
的最小值;
(3)在(2)的条件下,当
取最小值时,证明:
恰有一个零点
且存在递增的正整数数列
,使得
成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com