精英家教网 > 高中数学 > 题目详情

【题目】某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.

(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;

(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?

【答案】1

2)选择方案甲进行抽奖时,累计得分的数学期望最大

【解析】试题分析:解:(Ⅰ)由已知得:小明中奖的概率为,小红中奖的概率为,两人中奖与否互不影响,

2人的累计得分的事件为A,A事件的对立事件为”,

,

这两人的累计得分的概率为. 6

(Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为,都选择方案乙抽奖中奖的次数为,则这两人选择方案甲抽奖累计得分的数学期望为,选择方案乙抽奖累计得分的数学期望为

由已知:,

,

,

他们都在选择方案甲进行抽奖时,累计得分的数学期望最大. 12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(﹣1,4]时,f(x)=x2﹣2x , 则函数f(x)在区间[0,2016]上的零点个数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中, 为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,已知曲线.

(1)求的普通方程及的直角坐标方程,并说明它们分别表示什么曲线;

2)若分别为 上的动点,且的最小值为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为(
A.-
B.0
C.
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且满足a1=2,Sn-4Sn-1-2=0(n≥2,n∈Z).

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)令bn=log2an,Tn{bn}的前n项和,求证 <2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 ,且0<x1<x2<1,设 ,则a,b的大小关系是(
A.a>b
B.a<b
C.a=b
D.b的大小关系不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市AB两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.

(1)A中学至少有1名学生入选代表队的概率;

(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数z=(x﹣1)+yi(x∈R,y≥0),若|z|≤1,则y≥x的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)aln x(a0aR)

(1)a1,求函数f(x)的极值和单调区间;

(2)若在区间(0e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案