【题目】某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次乙肝普查,为此需要抽验960人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.
方案①:将每个人的血分别化验,这时需要验960次.
方案②:按
个人一组进行随机分组,把从每组
个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这
个人的血就只需检验一次;否则,若呈阳性,则需对这
个人的血样再分别进行一次化验,这样,该组
个人的血总共需要化验
次.
假设此次普查中每个人的血样化验呈阳性的概率为
,且这些人之间的试验反应相互独立.
(1)设方案②中,某组
个人中每个人的血化验次数为
,求
的分布列;
(2)设
,试比较方案②中,
分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数).
【答案】(1)见解析(2)390次
【解析】
(1)设每个人的血呈阴性反应的概率为
,则
,
,求出
个人的血混合后呈阴性反应的概率,呈阳性反应的概率得分布列;
(2)由(1)计算出期望
,令
分别计算出均值后可得检验次数,从而可得结论.
(1)设每个人的血呈阴性反应的概率为
,则![]()
所以
个人的血混合后呈阴性反应的概率为
,呈阳性反应的概率为![]()
依题意可知
,所以
的分布列为:
|
|
|
|
|
|
(2)方案②中
结合(1)知每个人的平均化验次数为:
![]()
所以当
时,
,此时
人需要化验的总次
数为
次,
时,
,此时
人需要化验的总次数为
次,
时,
,此时
人需要化验的次数总为
次
即
时化验次数最多,
时次数居中,
时化验次数最少
而采用方案①则需化验
次,
故在三种分组情况下,相比方案①,当
时化验次数最多可以平均
减少
次.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣sinx,记f(x)的导函数为f'(x).
(1)若h(x)=ax
f'(x)是(0,+∞)上的单调递增函数,求实数a的取值范围;
(2)若x∈(0,2π),试判断函数f(x)的极值点个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为
.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:
实施项目 | 种植业 | 养殖业 | 工厂就业 | 服务业 |
参加用户比 |
|
|
|
|
脱贫率 |
|
|
|
|
那么
年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮. 现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是
,
.两人共投篮3次,且第一次由甲开始投篮. 假设每人每次投篮命中与否均互不影响.则3次投篮的人依次是甲、甲、乙的概率___________;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从集市上买回来的蔬菜仍存有残留农药,食用时需要清洗数次,统计表中的
表示清洗的次数,
表示清洗
次后
千克该蔬菜残留的农药量(单位:微克).
x | 1 | 2 | 3 | 4 | 5 |
y | 4.5 | 2.2 | 1.4 | 1.3 | 0.6 |
(1)在如图的坐标系中,描出散点图,并根据散点图判断,
与
哪一个适宜作为清洗
次后
千克该蔬菜残留的农药量的回归方程类型;(给出判断即可,不必说明理由)
![]()
(2)根据判断及下面表格中的数据,建立
关于
的回归方程;
表中
,
.
|
|
|
|
|
| |
3 | 2 | 0.12 | 10 | 0.09 | -8.7 | 0.9 |
(3)对所求的回归方程进行残差分析.
附:①线性回归方程
中系数计算公式分别为
,
;
②
,
说明模拟效果非常好;
③
,
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】针对某新型病毒,某科研机构已研发出甲乙两种疫苗,为比较两种疫苗的效果,选取100名志愿者,将他们随机分成两组,每组50人.第一组志愿者注射甲种疫苗,第二组志愿者注射乙种疫苗,经过一段时间后,对这100名志愿者进行该新型病毒抗体检测,发现有
的志愿者未产生该新型病毒抗体,在未产生该新型病毒抗体的志愿者中,注射甲种疫苗的志愿者占
.
产生抗体 | 未产生抗体 | 合计 | |
甲 | |||
乙 | |||
合计 |
(1)根据题中数据,完成列联表;
(2)根据(1)中的列联表,判断能否有
的把握认为甲乙两种疫苗的效果有差异.
参考公式:
,其中
.
参考数据:
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,二面角α﹣1﹣β的平面角的大小为60°,A,B是1上的两个定点,且AB=2.C∈α,D∈β,满足AB与平面BCD所成的角为30°,且点A在平面BCD上的射影H在△BCD的内部(包括边界),则点H的轨迹的长度等于( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为
米峡谷拐入宽为
米的峡谷.如图所示,位于峡谷悬崖壁上两点
、
的连线恰好经过拐角内侧顶点
(点
、
、
在同一水平面内),设
与较宽侧峡谷悬崖壁所成角为
,则
的长为________(用
表示)米.要使输气管顺利通过拐角,其长度不能低于________米.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com