精英家教网 > 高中数学 > 题目详情

【题目】某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次乙肝普查,为此需要抽验960人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.

方案①:将每个人的血分别化验,这时需要验960.

方案②:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血就只需检验一次;否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这样,该组个人的血总共需要化验.

假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.

1)设方案②中,某组个人中每个人的血化验次数为,求的分布列;

2)设,试比较方案②中,分别取234时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数).

【答案】1)见解析(2390

【解析】

1)设每个人的血呈阴性反应的概率为,则,求出个人的血混合后呈阴性反应的概率,呈阳性反应的概率得分布列;

(2)由(1)计算出期望,令分别计算出均值后可得检验次数,从而可得结论.

1)设每个人的血呈阴性反应的概率为,则

所以个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为

依题意可知,所以的分布列为:

2)方案②中

结合(1)知每个人的平均化验次数为:

所以当时,,此时人需要化验的总次

数为次,

时,,此时人需要化验的总次数为次,

时,,此时人需要化验的次数总为

时化验次数最多,时次数居中,时化验次数最少

而采用方案①则需化验次,

故在三种分组情况下,相比方案①,当时化验次数最多可以平均

减少次.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnxsinx,记fx)的导函数为f'x).

1)若hx)=axf'x)是(0,+∞)上的单调递增函数,求实数a的取值范围;

2)若x0,2π),试判断函数fx)的极值点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实现国民经济新三步走的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施精准扶贫政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:

实施项目

种植业

养殖业

工厂就业

服务业

参加用户比

脱贫率

那么年的年脱贫率是实施精准扶贫政策前的年均脱贫率的(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮. 现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是.两人共投篮3次,且第一次由甲开始投篮. 假设每人每次投篮命中与否均互不影响.3次投篮的人依次是甲、甲、乙的概率___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从集市上买回来的蔬菜仍存有残留农药,食用时需要清洗数次,统计表中的表示清洗的次数,表示清洗次后千克该蔬菜残留的农药量(单位:微克).

x

1

2

3

4

5

y

4.5

2.2

1.4

1.3

0.6

1)在如图的坐标系中,描出散点图,并根据散点图判断,哪一个适宜作为清洗次后千克该蔬菜残留的农药量的回归方程类型;(给出判断即可,不必说明理由)

2)根据判断及下面表格中的数据,建立关于的回归方程;

表中

3

2

0.12

10

0.09

-8.7

0.9

3)对所求的回归方程进行残差分析.

附:①线性回归方程中系数计算公式分别为

说明模拟效果非常好;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】针对某新型病毒,某科研机构已研发出甲乙两种疫苗,为比较两种疫苗的效果,选取100名志愿者,将他们随机分成两组,每组50人.第一组志愿者注射甲种疫苗,第二组志愿者注射乙种疫苗,经过一段时间后,对这100名志愿者进行该新型病毒抗体检测,发现有的志愿者未产生该新型病毒抗体,在未产生该新型病毒抗体的志愿者中,注射甲种疫苗的志愿者占.

产生抗体

未产生抗体

合计

合计

1)根据题中数据,完成列联表;

2)根据(1)中的列联表,判断能否有的把握认为甲乙两种疫苗的效果有差异.

参考公式:,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,四边形为平行四边形,三角形为等边三角形,已知.

1)求证:

2)求直线与面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,二面角α1β的平面角的大小为60°AB1上的两个定点,且AB2CαDβ,满足AB与平面BCD所成的角为30°,且点A在平面BCD上的射影H在△BCD的内部(包括边界),则点H的轨迹的长度等于(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为米峡谷拐入宽为米的峡谷.如图所示,位于峡谷悬崖壁上两点的连线恰好经过拐角内侧顶点(点在同一水平面内),设与较宽侧峡谷悬崖壁所成角为,则的长为________(用表示)米.要使输气管顺利通过拐角,其长度不能低于________米.

查看答案和解析>>

同步练习册答案