精英家教网 > 高中数学 > 题目详情
13.如图所示,正方体ABCD-A1B1C1D1的棱长为a,M,N分别为A1B和AC上的点,A1M=AN=$\frac{\sqrt{2}a}{3}$,则MN与平面BB1C1C的位置关系是(  )
A.相交B.平行C.垂直D.不能确定

分析 由于CD⊥平面B1BCC1,所以$\overrightarrow{CD}$是平面B1BCC1的法向量,因此只需证明向量$\overrightarrow{MN}$与$\overrightarrow{CD}$垂直即可,而$\overrightarrow{CD}$与$\overrightarrow{{B}_{1}B}$和$\overrightarrow{{B}_{1}{C}_{1}}$均垂直,而$\overrightarrow{{B}_{1}B}$和$\overrightarrow{{B}_{1}{C}_{1}}$又可以作为一组基底表示向量$\overrightarrow{MN}$,因此可以证明.

解答 解:∵正方体棱长为a,A1M=AN=$\frac{\sqrt{2}a}{3}$,
∴$\overrightarrow{MB}$=$\frac{2}{3}$$\overrightarrow{{A}_{1}B}$,$\overrightarrow{CN}$=$\frac{2}{3}$$\overrightarrow{CA}$,
∴$\overrightarrow{MN}$=$\overrightarrow{MB}$+$\overrightarrow{BC}$+$\overrightarrow{CN}$=$\frac{2}{3}$$\overrightarrow{{A}_{1}B}$+$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{CA}$=$\frac{2}{3}$($\overrightarrow{{A}_{1}{B}_{1}}$+$\overrightarrow{{B}_{1}B}$)+$\overrightarrow{BC}$+$\frac{2}{3}$($\overrightarrow{CD}$+$\overrightarrow{DA}$)
=$\frac{2}{3}$$\overrightarrow{{B}_{1}B}$+$\frac{1}{3}$$\overrightarrow{{B}_{1}{C}_{1}}$.
又∵$\overrightarrow{CD}$是平面B1BCC1的法向量,
且$\overrightarrow{MN}$•$\overrightarrow{CD}$=($\frac{2}{3}$$\overrightarrow{{B}_{1}B}$+$\frac{1}{3}$$\overrightarrow{{B}_{1}{C}_{1}}$)•$\overrightarrow{CD}$=0,
∴$\overrightarrow{MN}$⊥$\overrightarrow{CD}$,
∴MN∥平面B1BCC1
故选:B.

点评 本题考查线面平行的判定,在适当条件下,可以用向量法证明,只需证明该直线的一个方向向量与该平面的一个法向量垂直即可.要注意的是这两个向量必须用同一组基底来表示.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知f(x)=$\frac{1}{3}{x^3}+\frac{a}{2}{x^2}+({a-1})x+1$,x∈R,其中参数a∈R.
(Ⅰ)是否存在a,使得f(x)在R上单调递增,若存在求a的取值集合,不存在说明理由;
(Ⅱ)若过点P(0,1)且与y=f(x)相切的直线有且只有一条,求a的值;
(Ⅲ)在(Ⅱ)的条件下,设点Q(m,n),且m>0,证明:若过Q且与曲线y=f(x)相切的直线有三条,则-m+1<n<$\frac{1}{3}{m^3}$-m+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知幂函数$f(x)={x^{{m^2}-2m-3}}(m∈Z)$为偶函数,且在(0,+∞)上是减函数,则f(x)的解析式是f(x)=x-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a=(1,\sqrt{3}),\overrightarrow b=(0,1)$,则$\overrightarrow a$在$\overrightarrow b$方向上的投影是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\frac{1+2lnx}{x^2}$.
(1)求函数f(x)的单调区间.
(2)令g(x)=ax2-2lnx-1,若函数y=g(x)有两个不同的零点,求实数a的取值范围.
(3)若存在x1,x2∈(0,+∞)且x1≠x2,使$\frac{{f({x_1})-f({x_2})}}{{ln{x_1}-ln{x_2}}}≤k$成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.log225+${log_{\frac{1}{2}}}$8+log416+${log_{\sqrt{2}}}\frac{1}{5}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow m$=(2sinx,1),$\overrightarrow n$=($\sqrt{3}$cosx,2cos2x),函数f(x)=$\overrightarrow m$•$\overrightarrow n$-t.
( I)若方程f(x)=0在x∈[0,$\frac{π}{2}$]上有解,求t的取值范围;
(II)在△ABC中,a,b,c分别是A,B,C所对的边,当t=3且f(A)=-1,b+c=2时,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.先后抛掷质地均匀的硬币两次,则“一次正面向上,一次反面向上”的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B={1,4}.

查看答案和解析>>

同步练习册答案