精英家教网 > 高中数学 > 题目详情
1.已知向量$\overrightarrow a=(1,\sqrt{3}),\overrightarrow b=(0,1)$,则$\overrightarrow a$在$\overrightarrow b$方向上的投影是$\sqrt{3}$.

分析 求出|$\overrightarrow{a}$|,|$\overrightarrow{b}$|,及夹角的余弦值,代入投影公式计算.

解答 解:设$\overrightarrow{a},\overrightarrow{b}$的夹角为θ,则cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{\sqrt{3}}{2•1}$=$\frac{\sqrt{3}}{2}$,
∴$\overrightarrow a$在$\overrightarrow b$方向上的投影为|$\overrightarrow{a}$|cosθ=2$•\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若平面内有n(n≥4)个点,满足任意三点都不共线,且任意两点构成的向量与其余任意两点构成的向量的数量积为0,则n的最大值为(  )
A.3B.4C.5D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.阅读程序框图如图所示,若输入x=4,则输出y的值为496.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.抛物线$x=\frac{1}{4}{y^2}$的焦点到双曲线x2-y2=2的渐近线的距离是(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在如图所示的四棱锥P-ABCD中,底面ABCD为矩形,侧棱PD⊥底面ABCD,且PD=CD=2,点E为PC的中点,连接DE,BD,BE.
(1)证明:PA∥平面DBE;
(2)若直线BD与平面PBC所成角的为30°,求点E到平面PDB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,正方体ABCD-A1B1C1D1的棱长为a,M,N分别为A1B和AC上的点,A1M=AN=$\frac{\sqrt{2}a}{3}$,则MN与平面BB1C1C的位置关系是(  )
A.相交B.平行C.垂直D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.i为虚数单位,复数$\frac{{{i^{2015}}}}{i+1}$在复平面内对应的点到原点的距离为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知幂函数f(x)=x${\;}^{({m}^{2}+m)^{-1}}$(m∈N+)经过点(2,$\sqrt{2}$),试确定m的值,并满足条件f(2-a)>f(a-1)的实数a的取值范围$[1,\frac{3}{2})$.

查看答案和解析>>

同步练习册答案