精英家教网 > 高中数学 > 题目详情
12.当实数m为何值时,z=$\frac{{m}^{2}-m-6}{m+3}$+(m2+5m+6)i
(1)为虚数; 
(2)复数z对应的点在复平面内的第二象限内.

分析 (1)若z为虚数,则m2+5m+6≠0;
(2)若z对应的点在第二象限,则$\left\{\begin{array}{l}{\frac{{m}^{2}-m-6}{m+3}<0}\\{{m}^{2}+5m+6>0}\end{array}\right.$,解出即可得出.

解答 解:(1)若z为虚数,则m2+5m+6≠0,
∴m≠-2且m≠-3.
(2)若z对应的点在第二象限,则$\left\{\begin{array}{l}{\frac{{m}^{2}-m-6}{m+3}<0}\\{{m}^{2}+5m+6>0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{m<-3或-2<m<3}\\{m<-3或m>-2}\end{array}\right.$.
∴m<-3或-2<m<3.

点评 本题考查了虚数的定义、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知曲线y=x3+3x2-5
(1)求过M(1,-1)的切线方程;
(2)求y=f(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.沧州市第二中学辩论队于2016年12月代表河北省参加第二届京津中学生辩论赛,并获得亚军,现在辩论队由3名男队和5名队员组成.
(1)学校为宣传辩论队取得的优异成绩,需要给全体队员排队照相,要求3名队员互不相邻,有多少种不同排法?
(2)将8名队员分成四个小组,每个小组两人,分别取高一1,2,3,4班四个班开座谈会,有多少种不同的分组方式?
(3)为准备下次的比赛,现从从8名队员中选出4名队员做一辨、二辨、三辨、四辨,要求至少有一名男队员,有多少种不同的选法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z=2-i在复平面对应的点在第几象限(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.按如图的规律所拼成的一图案共有1024个大小相同的小正三角形“△”或“?”,则该图案共有(  )
A.16层B.32层C.64层D.128层

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.比较大小:$\sqrt{11}$+$\sqrt{7}$>$\sqrt{13}+\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,网格纸上小正方形的边长为1,粗线画出的是一个四棱锥的三视图,则该四棱锥最长棱的棱长为(  )
A.3B.$\sqrt{5}$C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.$C_2^2+C_3^2+C_4^2+…C_{11}^2$=220.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C所对边分别为a,b,c,$\frac{sinA}{sinB+sinC}=1-\frac{a-b}{a-c}$.
(I)设$\overrightarrow m=({sinA,1}),\overrightarrow n=({8cosB,cos2A})$,判断$\overrightarrow m•\overrightarrow n$最大时△ABC的形状.
(II)若$b=\sqrt{3}$,求△ABC周长的取值范围.

查看答案和解析>>

同步练习册答案