分析 先平方,再比较即可.
解答 解:∵($\sqrt{11}$+$\sqrt{7}$ )2=18+2$\sqrt{77}$,($\sqrt{13}+\sqrt{5}$)2=18+2$\sqrt{65}$,
又77>65,
∴2$\sqrt{77}$>2$\sqrt{65}$,
∴18+2$\sqrt{77}$>18+2$\sqrt{65}$,
∴($\sqrt{11}$+$\sqrt{7}$ )2>($\sqrt{13}+\sqrt{5}$)2,
∴$\sqrt{11}$+$\sqrt{7}$>$\sqrt{13}+\sqrt{5}$,
故答案为:>
点评 本题考查不等式的大小比较,利用了综合法,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 常 喝 | 不常喝 | 总 计 | |
| 肥 胖 | 2 | ||
| 不肥胖 | 18 | ||
| 总 计 | 30 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{420-32π}{3}$ | B. | $\frac{336-32π}{3}$ | C. | $\frac{168-4π}{3}$ | D. | $\frac{168\sqrt{2}-64\sqrt{2}π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 甲 | B. | 乙 | C. | 丙 | D. | 乙和丙都有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$+$\frac{1}{8}$i | B. | -$\frac{1}{8}$-$\frac{1}{8}$i | C. | -$\frac{1}{8}$+$\frac{1}{8}$i | D. | $\frac{1}{8}$-$\frac{1}{8}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com