精英家教网 > 高中数学 > 题目详情
5.为了了解青少年的肥胖是否与常喝碳酸饮料有关,现对30名青少年进行调查,得到如下列联表:
常  喝不常喝总  计
肥  胖2
不肥胖18
总  计30
已知从这30名青少年中随机抽取1名,抽到肥胖青少年的概率为$\frac{4}{15}$.
(1)请将列联表补充完整;(2)是否有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关?
独立性检验临界值表:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

分析 (1)设常喝碳酸饮料肥胖的学生有x人,求出x的值,填表即可;
(2)计算观测值K2,对照数表得出结论;

解答 解:(1)设常喝碳酸饮料且肥胖的青少年人数为x,则$\frac{x+2}{30}$=$\frac{4}{15}$ 解得x=6
列联表如下:

常  喝不常喝总  计
肥  胖628
不肥胖41822
总  计102030
(2)由(1)中列联表中的数据可求得随机变量k2的观测值:
k=$\frac{30×(6×18-2×4)^{2}}{10×20×8×22}$≈8.523>7.789
因此有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关.

点评 本题考查了列联表与独立性检验的问题,是基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=4+loga(x-2),(a>0,且a≠1)其图象过定点P,角α的始边与x轴的正半轴重合,顶点为坐标原点,终边过定点P,则$\frac{sinα+2cosα}{sinα-cosα}$=10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.有一天,某城市的珠宝店被盗走了价值数万元的钻石.报案后,经过三个月的侦察,查明作案人肯定是甲.乙.丙.丁中的一人.经过审讯,这四个人的口供如下:
甲:钻石被盗的那天,我在别的城市,所以我不是罪犯.
乙:丁是罪犯.
丙:乙是盗窃犯,三天前,我看见他在黑市上卖一块钻石.丁:乙同我有仇,有意诬陷我.因为口供不一致,无法判断谁是罪犯.经过测谎试验知道,这四人只有一个人说的是真话,那么你能判断罪犯是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.观察如图:
1,
2,3
4,5,6,7
8,9,10,11,12,13,14,15,

问:(1)此表第n行的最后一个数是多少?
(2)此表第n行的各个数之和是多少?
(3)2010是第几行的第几个数?
(4)是否存在n∈N*,使得第n行起的连续10行的所有数之和为227-213-120?若存在,求出n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z=2-i在复平面对应的点在第几象限(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设p:实数x满足x2+2ax-3a2<0(a>0),q:实数x满足x2+2x-8<0,且?p是?q的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.比较大小:$\sqrt{11}$+$\sqrt{7}$>$\sqrt{13}+\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.利用独立性检验来考虑两个分类变量X与Y是否有关系时,通过查阅下表来确定“X和Y有关系”的可信度,如果k>3.841,那么就有把握认为“X和Y有关系”的百分比为(  )
p(K2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4520.7081.3232.0722.7063.8415.0246.6357.87910.83
A.25%B.95%C.5%D.97.5%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$cos(α-\frac{π}{3})=\frac{2}{3}$,$cos(β+\frac{π}{6})=-\frac{2}{3}$,α是锐角,β是钝角,则sin(α-β)=(  )
A.$-\frac{1}{2}$B.-1C.$-\frac{{\sqrt{3}}}{6}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案