精英家教网 > 高中数学 > 题目详情

【题目】下列结论:函数是同一函数;函数的定义域为,则函数的定义域为函数的递增区间为;其中正确的个数为( )

A.0B.1C.2D.3

【答案】A

【解析】

试题对于,由于函数的定义域为R的定义域为[0+∞),这两个函数的定义域不同,故不是同一函数,故不满足条件.

对于,由于函数fx-1)的定义域为[12],故有0≤x-1≤1

对于函数f3x2),可得0≤3x2≤1,解得x∈[-,]

故函数f3x2)的定义域为[-,],故不正确.

对于,函数y=log2x2+2x-3),令t=x2+2x-30,求得x-3,或x1

故函数的定义域为(-∞-31+∞),本题即求t在定义域内的增区间,

利用二次函数的性质可得t的递增区间为(1+∞),故不正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中中,曲线的参数方程为为参数, ). 以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为.

(1)设是曲线上的一个动点,当时,求点到直线的距离的最大值;

(2)若曲线上所有的点均在直线的右下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在平面直角坐标系中,直线的参数方程为为参数),曲线的方程为.以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.

1)求直线和曲线的极坐标方程;

2)曲线分别交直线和曲线于点的最大值及相应的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过函数性质的学习,我们知道:函数的图象关于轴成轴对称图形的充要条件是为偶函数”.

1)若为偶函数,且当时,,求的解析式,并求不等式的解集;

2)某数学学习小组针对上述结论进行探究,得到一个真命题:函数的图象关于直线成轴对称图形的充要条件是为偶函数”.若函数的图象关于直线对称,且当时,.

i)求的解析式;

ii)求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,已知是边长为2的正方形, 为正三角形, 分别为的中点, .

(1)求证: 平面

(2)求证: 平面

3)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求的单调区间;

(2)若图像上任意一点处的切线的斜率的取值范围;

(3)若对于区间上任意两个不相等的实数都有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD-A1B1C1D1的棱长为2,E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM//平面A1DE,则动点M 的轨迹长度为( )

A. B. π C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点AB.

)求椭圆M的方程;

)若,求 的最大值;

)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.C,D和点 共线,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2009年为第1年,且前4年中,第x年与年产量f(x) 万件之间的关系如下表所示:

x

1

2

3

4

f(x)

4.00

5.58

7.00

8.44

f(x)近似符合以下三种函数模型之一:f(x)=axbf(x)=2xaf(x)=logxa.

(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;

(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少30%,试根据所建立的函数模型,确定2015年的年产量.

查看答案和解析>>

同步练习册答案