【题目】已知函数。
(1)若f(x)的图象与g(x)的图象所在两条曲线的一个公共点在y轴上,且在该点处两条曲线的切线互相垂直,求b和c的值。
(2)若a=c=1,b=0,试比较f(x)与g(x)的大小,并说明理由;
(3)若b=c=0,证明:对任意给定的正数a,总存在正数m,使得当x时,
恒有f(x)>g(x)成立。
【答案】(1)(2)当时, ;当时, ;当时, .(3)详见解析
【解析】试题分析:(1)由题意得, ,即(2)构造函数则.当时, , ,
当时,设,则,当时, 取得极小值, 且极小值为,故在上单调递增, , (3)构造函数,则,故在上有最小值, ,①若,存在,使当时,恒有;若,存在,使当时,恒有;③若,存在,使当时,恒有;
试题解析:(1)解: , , , , , 2分
依题意: ,所以 ; 4分
(2)解: , 时, , 5分
①时, , ,即
②时, , ,即
③时,令,则.
设,则,
当时, 单调递减;当时, 单调递增.
所以当时, 取得极小值, 且极小值为
即恒成立,故在上单调递增,又,
因此,当时, ,即. 9分
综上,当时, ;当时, ;当时, . 10分
(3)
证法一:①若,由(2)知,当时, .即,
所以, 时,取,即有当,恒有.
②若, 即,等价于即
令,则.当时, 在内单调递增.
取,则,所以在内单调递增.
又
即存在,当时,恒有. 15分
综上,对任意给定的正数,总存在正数,使得当,恒有. 16分
证法二:设,则,
当时, , 单调减,当时, , 单调增,
故在上有最小值, , 12分
①若,则在上恒成立,
即当时,存在,使当时,恒有;
②若,存在,使当时,恒有;
③若,同证明一的②, 15分
综上可得,对任意给定的正数,总存在,当时,恒有. 16分
科目:高中数学 来源: 题型:
【题目】已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m﹣2)x+1=0无实根,若“p或q”真“p且q”为假,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,侧面PAD⊥底面ABCD,∠BCD=60°,PA=PD= ,E是BC中点,点Q在侧棱PC上.
(1)求证:AD⊥PB;
(2)若Q是PC中点,求二面角E﹣DQ﹣C的余弦值;
(3)若 ,当PA∥平面DEQ时,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某商业中心O有通往正东方向和北偏东30方向的两条街道,某公园P位于商业中心北偏东角(),且与商业中心O的距离为公里处,现要经过公园P修一条直路分别与两条街道交汇于A,B两处。
(1)当AB沿正北方向时,试求商业中心到A,B两处的距离和;
(2)若要使商业中心O到A,B两处的距离和最短,请确定A,B的最佳位置。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: =1(a>b>0)过点(1, ),左右焦点为F1、F2 , 右顶点为A,上顶点为B,且|AB|= |F1F2|.
(1)求椭圆E的方程;
(2)直线l:y=﹣x+m与椭圆E交于C、D两点,与以F1、F2为直径的圆交于M、N两点,且 = ,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com