精英家教网 > 高中数学 > 题目详情
14.若不等式2x2+ax+b<0的解集为$\left\{{x\left|{-\frac{1}{2}<x<\frac{1}{3}}\right.}\right\}$,则a-b的值是$\frac{2}{3}$.

分析 根据不等式和方程的关系,得到关于a,b的方程,求出a,b的值,作差即可.

解答 解:由题意,得-$\frac{a}{2}$=-$\frac{1}{6}$,$\frac{b}{2}$=-$\frac{1}{6}$,
解得:a=$\frac{1}{3}$,b=-$\frac{1}{3}$,
所以a-b=$\frac{1}{3}$-(-$\frac{1}{3}$)=$\frac{2}{3}$,
故答案为:$\frac{2}{3}$.

点评 本题考查了二次方程和不等式的关系,考查解方程问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有81种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.把函数f(x)=cos2x-sin2x的图象向右平移φ(φ>0)个单位后,恰好与原图象重合,则符合题意的φ的值可以为(  )
A.$\frac{π}{2}$B.$\frac{3π}{4}$C.πD.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\left\{\begin{array}{l}lnx,x>0\\ ax+2,x≤0\end{array}\right.$(a∈R),若函数y=|f(x)|-a有三个零点,则实数a的取值范围是(  )
A.a≥-2B.a>2C.0<a<1D.1≤a<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等比数列{an}的各项为正,公比q满足q2=4,则$\frac{{{a_3}+{a_4}}}{{{a_5}+{a_6}}}$=(  )
A.$\frac{1}{4}$B.2C.$±\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.随机变量$ξ~B(n,\frac{1}{3})$,且E(3ξ+2)=8,则n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,若b=2asinB,则这个三角形中角A的值是30°或150°..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知{an}数列的首项为a1,满足${a_n}+{a_{n-1}}=n•{(-1)^{\frac{n(n+1)}{2}}}(n∈N,n≥2)$,S2017=-1006-b,且a1b>0,则$\frac{1}{a_1}+\frac{4}{b}$的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$θ∈({\frac{π}{2},π}),\;\;sinθ=\frac{3}{5}$,则$tan({θ+\frac{π}{4}})=({\;\;\;\;\;\;})$.
A.$-\frac{1}{7}$B.7C.$\frac{1}{7}$D.-7

查看答案和解析>>

同步练习册答案