精英家教网 > 高中数学 > 题目详情

【题目】某工厂生产某种产品,每生产1吨产品需人工费4万元,每天还需固定成本3万元.经过长期调查统计,每日的销售额(单位:万元)与日产量(单位:吨)满足函数关系,已知每天生产4吨时利润为7万元.

(1)求的值;

(2)当日产量为多少吨时,每天的利润最大,最大利润为多少?

【答案】(1)18;(2)当日产量为7吨时利润最大,最大利润为10万元

【解析】分析:(1)由题意,每天的成本 每天的利润时,代入解析式,可得的值;(2)由(1)知:利润分别求得的最大值,从而可得结果.

详解(1)由题意,每天的成本

每天的利润

时,

,∴

(2)由(1)知:利润

时,=

=

=10

当且仅当,即时取得最大值.

时,为减函数,

∴当时,<10

综上所述,当日产量为7吨时利润最大,最大利润为10万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆 的有 条弦,且任意两条弦都彼此相交,任意三条弦不共点,这 条弦将圆 分成了 个区域,(例如:如图所示,圆 的一条弦将圆 分成了2(即 )个区域,圆 的两条弦将圆 分成了4(即 )个区域,圆 的3条弦将圆 分成了7(即 )个区域),以此类推,那么 之间的递推式关系为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的一个顶点为A(2,0),离心率为 .直线y=k(x-1)与椭圆C交于不同的两点M、N.
(1)求椭圆C的方程.
(2)当△AMN的面积为 时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100]分成5组,制成如图所示频率分直方图.
(Ⅰ) 求图中x的值;
(Ⅱ) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是等边三角形,侧面AA1B1B为正方形,且AA1⊥平面ABC,D为线段AB上的一点.
(Ⅰ) 若BC1∥平面A1CD,确定D的位置,并说明理由;
(Ⅱ) 在(Ⅰ)的条件下,求二面角A1D﹣C﹣BC1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三角形的边长为2,将它沿高翻折,使点与点间的距离为,此时四面体外接球表面积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知任意角以坐标原点为顶点,轴的非负半轴为始边,若终边经过点,且,定义:,称“”为“正余弦函数”,对于“正余弦函数”,有同学得到以下性质:

①该函数的值域为; ②该函数的图象关于原点对称;

③该函数的图象关于直线对称; ④该函数为周期函数,且最小正周期为

⑤该函数的递增区间为.

其中正确的是__________.(填上所有正确性质的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, (O是坐标原点),其中

(1)B点坐标;

(2)求四边形OABC在第一象限部分面积 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图象的相邻两条对称轴之间的距离为,则下列说法正确的是__________.(写出所有正确结论的序号)

是偶函数;

②函数的图象关于点对称;

③函数上单调递增;

④将函数的图象向右平移个单位长度,可得函数的图象;

的对称轴方程为.

查看答案和解析>>

同步练习册答案