精英家教网 > 高中数学 > 题目详情
5.命题“若x2+y2=0,则x、y全为0”的逆否命题是(  )
A.若x、y全为0,则 x2+y2≠0B.若x、y不全为0,则 x2+y2=0
C.若x、y全不为0,则 x2+y2≠0D.若x、y不全为0,则 x2+y2≠0

分析 根据命题“若p,则q”的逆否命题是“若¬q,则¬p”,写出该命题的逆否命题即可.

解答 解:根据命题“若p,则q”的逆否命题是“若¬q,则¬p”,得:
命题“若x2+y2=0,则x、y全为0”的逆否命题是
命题“若x、y不全为0,则x2+y2≠0”.
故选:D.

点评 本题考查了命题与它的逆否命题的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.用反证法证明时,对结论“自然数a,b,c至少有1个为偶数”的正确假设为a,b,c都是奇数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在平面直角坐标系xOy中,已知圆C:x2+(y-3)2=2,点A是x轴上的一个动点,AP,AQ分别切圆C于P,Q两点,则线段PQ的取值范围是(  )
A.[$\frac{\sqrt{14}}{3}$,$\sqrt{2}$)B.[$\frac{2\sqrt{14}}{3}$,2$\sqrt{2}$)C.[$\frac{\sqrt{14}}{3}$,$\sqrt{2}$]D.[$\frac{2\sqrt{14}}{3}$,2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在四棱锥P-ABCD中,PD⊥平面ABCD,又AD∥BC,AD⊥DC,且PD=BC=3AD=3.
(Ⅰ)画出四棱准P-ABCD的正视图;
(Ⅱ)求证:平面PAD⊥平面PCD;
(Ⅲ)求证:棱PB上存在一点E,使得AE∥平面PCD,并求$\frac{PE}{EB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(n)=(1+$\frac{1}{1}$)(1+$\frac{1}{4}$)(1+$\frac{1}{7}$)…(1+$\frac{1}{3n-2}$)(n∈N*),g(n)=$\root{3}{3n+1}$(n∈N*
(1)当m=1,2,3时,分别比较f(n)与g(n)的大小(直接给出结论);
(2)由(1)猜想f(n)与g(n)的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|-1≤x≤3},B={x|(x-m-2)(x-m+2)≤0},m∈R.
(Ⅰ)当m=2时;求集合A∪B;
(Ⅱ)若A⊆∁RB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.规定记号“?”表示一种运算,即a?b=ab+a+b2(a,b为正实数),若1?k=3,则k=(  )
A.1B.-2C.-2或1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知|$\overrightarrow a}$|=$\sqrt{2}$,|${\overrightarrow b}$|=1.
(1)若$\overrightarrow a,\overrightarrow b$的夹角θ为45°,求|$\overrightarrow a-\overrightarrow b}$|;
(2)若($\overrightarrow a-\overrightarrow b$)⊥$\overrightarrow b$,求$\overrightarrow a$与$\overrightarrow b$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sin(2x+φ)(-π<φ<0)的一条对称轴是$x=\frac{π}{8}$.
(1)求φ;
(2)用五点法画出f(x)在$x∈[\frac{π}{8},\frac{7π}{8}]$的图象;并确定m的取值范围,是方程f(x)=m,x∈[$\frac{π}{8}$,$\frac{7π}{8}$]有两个不同的解.

查看答案和解析>>

同步练习册答案