精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若方程有四个不等的实数根,则的取值范围是(

A.B.

C.D.

【答案】D

【解析】

先对函数求导,用导数的方法判断其在上的单调性,作出函数的大致图像,令,根据图像,得到方程解的个数情况,以及其对应的的范围,再由题意得到方程必有两个不等的实根,根本判别式大于零,得到的范围,再设这两个根为,且,由题意,得到,进而可得出结果.

由题意,当时,,所以

;由

所以函数上单调递增,在上单调递减,

作出函数大致图像如下:

,由图像可得:

时,方程个解;

时,方程个解;

时,方程个解;

若方程有四个不等的实数根,

则方程必有两个不等的实根,

所以,解得:

不妨设这两个根为,且

解得:.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的表面积为__________;若该六面体内有一小球,则小球的最大体积为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1-50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮测试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:

甲抽取的样本数据

编号

2

7

12

17

22

27

32

37

42

47

性别











投篮成

90

60

75

80

83

85

75

80

70

60

乙抽取的样本数据

编号

1

8

10

20

23

28

33

35

43

48

性别











投篮成

95

85

85

70

70

80

60

65

70

60

)在乙抽取的样本中任取3人,记投篮优秀的学生人数为,求的分布列和数学期望.

)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?


优秀

非优秀

合计









合计



10

)判断甲、乙各用何种抽样方法,并根据()的结论判断哪种抽样方法更优?说明理由.

下面的临界值表供参考:


0.15

0.10

0.05

0.010

0.005

0.001


2.072

2.706

3.841

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,且

1)令证明:是等差数列,是等比数列;

2)求数列的通项公式;

3)求数列的前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某组织在某市征集志愿者参加志愿活动,现随机抽出60名男生和40名女生共100人进行调查,统计出100名市民中愿意参加志愿活动和不愿意参加志愿活动的男女生比例情况,具体数据如图所示.

(1)根据条件完成下列列联表,并判断是否有的把握认为愿意参与志愿活动与性别有关?

愿意

不愿意

总计

男生

女生

总计

(2)现用分层抽样的方法从愿意参加志愿活动的市民中选取7名志愿者,再从中抽取2人作为队长,求抽取的2人至少有一名女生的概率.

参考数据及公式:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABCD中,四边形ABCD是直角梯形,底面,,,的中点.

(1)求证:平面平面

(2)若与平面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学对五年级的学生进行体质测试,已知五年一班共有学生30人,测试立定跳远的成绩用茎叶图表示如图(单位:):男生成绩在175以上(包括175)定义为“合格”,成绩在175以下(不包括175)定义为“不合格”.女生成绩在165以上(包括165)定义为“合格”,成绩在165以下(不包括165)定义为“不合格”.

(1)求五年一班的女生立定跳远成绩的中位数;

(2)在五年一班的男生中任意选取3人,求至少有2人的成绩是合格的概率;

(3)若从五年一班成绩“合格”的学生中选取2人参加复试,用表示其中男生的人数,写出的分布列,并求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,点上.

(1)求椭圆的方程;

(2)若直线与椭圆相交于两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润60元,若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利40.

1)若商品一天购进该商品10件,求当天的利润(单位:元)关于当天需求量(单位:件,)的函数解析式;

2)商店记录了50天该商品的日需求量(单位:件,),整理得下表:

若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间内的概率.

查看答案和解析>>

同步练习册答案