精英家教网 > 高中数学 > 题目详情

【题目】某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润60元,若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利40.

1)若商品一天购进该商品10件,求当天的利润(单位:元)关于当天需求量(单位:件,)的函数解析式;

2)商店记录了50天该商品的日需求量(单位:件,),整理得下表:

若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间内的概率.

【答案】(1) (2)

【解析】

1)根据题意分两段,求分段函数;

2)根据表格计算不同的日需求量对应的利润,并且计算利润在时,对应的频数,并计算频率,就是所求概率.

解:(1)当日需求量时,利润为

当日需求量时,利润为.

所以利润关于需求量的函数解析式为

.

250天内有4天获得的利润为390元,有8天获得的利润为460元,有10天获得的利润为530元,有14天获得的利润为600元,有9天获得的利润为640元,有5天获得的利润为680. 若利润在区间内,日需求量为91011,其对应的频数分别为10149. 则利润在区间内的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,若方程有四个不等的实数根,则的取值范围是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.

1)经过1轮投球,记甲的得分为,求的分布列;

2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.

①求

②规定,经过计算机计算可估计得,请根据①中的值分别写出ac关于b的表达式,并由此求出数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,且存在单调递减区间,求实数的取值范围;

(2)设函数的图象与函数的图象交于点 ,过线段的中点作轴的垂线分别交 于点 ,证明: 在点处的切线与在点处的切线不平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的半焦距为,圆与椭圆有且仅有两个公共点,直线与椭圆只有一个公共点.

1)求椭圆的标准方程;

2)已知动直线过椭圆的左焦点,且与椭圆分别交于两点,试问:轴上是否存在定点,使得为定值?若存在,求出该定值和点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示1-9的一种方法.则据此,3可表示为“”,26可表示为“”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-99数字表示的两位数的个数为(

A.9B.13C.16D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在矩形PABC中,AB2BC4DPC的中点,以AD为折痕将PAD折起,折到如图2的位置,使得PB2

1)求证:AP⊥平面PBD

2)求平面PCD与平面PBC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),是自然对数的底数.

(1)当时,求的单调增区间;

(2)若对任意的),求的最大值;

(3)若的极大值为,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)a(x1)lnx(aR)g(x)(1x)ex.

1)讨论函数f(x)的单调性;

2)若对任意给定的x0[11],在区间(0e]上总存在两个不同的xi(i12),使得f(xi)g(x0)成立,求a的取值范围.

查看答案和解析>>

同步练习册答案