【题目】某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润60元,若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利40元.
(1)若商品一天购进该商品10件,求当天的利润
(单位:元)关于当天需求量
(单位:件,
)的函数解析式;
(2)商店记录了50天该商品的日需求量
(单位:件,
),整理得下表:
![]()
若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间
内的概率.
科目:高中数学 来源: 题型:
【题目】11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为
,乙每次投球命中的概率为
,且各次投球互不影响.
(1)经过1轮投球,记甲的得分为
,求
的分布列;
(2)若经过
轮投球,用
表示经过第
轮投球,累计得分,甲的得分高于乙的得分的概率.
①求
;
②规定
,经过计算机计算可估计得
,请根据①中
的值分别写出a,c关于b的表达式,并由此求出数列
的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,
.
(1)若
,且
存在单调递减区间,求实数
的取值范围;
(2)设函数
的图象
与函数
的图象
交于点
,
,过线段
的中点作
轴的垂线分别交
,
于点
,
,证明:
在点
处的切线与
在点
处的切线不平行.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的半焦距为
,圆
与椭圆
有且仅有两个公共点,直线
与椭圆
只有一个公共点.
(1)求椭圆
的标准方程;
(2)已知动直线
过椭圆
的左焦点
,且与椭圆
分别交于
两点,试问:
轴上是否存在定点
,使得
为定值?若存在,求出该定值和点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示1-9的一种方法.则据此,3可表示为“
”,26可表示为“
”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9数字表示的两位数的个数为( )
![]()
A.9B.13C.16D.18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在矩形PABC中,AB=2BC=4,D为PC的中点,以AD为折痕将△PAD折起,折到如图2的位置,使得PB=2
.
![]()
(1)求证:AP⊥平面PBD
(2)求平面PCD与平面PBC所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a(x﹣1)﹣lnx(a∈R),g(x)=(1﹣x)ex.
(1)讨论函数f(x)的单调性;
(2)若对任意给定的x0∈[﹣1,1],在区间(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com