精英家教网 > 高中数学 > 题目详情
2.如图,圆锥的轴截面为三角形SAB,O为底面圆圆心,C为底面圆周上一点,D为BC的中点.
(I)求证:平面SBC⊥平面SOD;
(II)如果∠AOC=∠SDO=60°,BC=2$\sqrt{3}$,求该圆锥的侧面积.

分析 (Ⅰ)推导出SO⊥平面OBC,从而SO⊥BC,再求出OD⊥BC,从而BC⊥平面SOD,由此能证明平面SBC⊥平面SOD.
(Ⅱ)求出∠COD=60°,OD=1,OC=2,SO=$\sqrt{3}$,SA=$\sqrt{7}$,由此能求出该圆锥的侧面积.

解答 证明:(Ⅰ)由题意知SO⊥平面OBC,
又BC?平面OBC,∴SO⊥BC,
在△OBC中,OB=OC,CD=BD,
∴OD⊥BC,
又SO∩OD=O,∴BC⊥平面SOD,
又BC?平面SBC,∴平面SBC⊥平面SOD.
解:(Ⅱ)在△OBC中,OB=OC,CD=BD,
∵∠AOC=60°,∴∠COD=60°,
∵CD=$\frac{1}{2}BC=\sqrt{3}$,∴OD=1,OC=2,
在△SOD中,∠SDO=60°,又SO⊥OD,∴SO=$\sqrt{3}$,
在△SAO中,OA=OC=2,∴SA=$\sqrt{7}$,
∴该圆锥的侧面积为${S}_{侧}=π×OA×SA=2\sqrt{7}π$.

点评 本题考查面面垂直的证明,考查圆锥的侧面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\sqrt{3}sinωx-2{cos^2}\frac{ω}{2}$x+1(ω>0)直线y=2与函数f(x)图象相邻两交点的距离为π.
(1)求f(x)的解析式;
(2)在△ABC中,角A、B、C所对的边分别是a、b、c,若点$(\frac{B}{4},0)$是函数y=f(x)图象的一个对称中心,且b=2$\sqrt{3}$,a+c=6,求△ABC面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在(x+a)5的展开式中,x3的系数为40,则a=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设抛物线x2=2y的焦点为F,经过点P(1,3)的直线l与抛物线相交于A,B两点,且点P恰为AB的中点,则$|\overrightarrow{AF}|+|\overrightarrow{BF}|$=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知双曲线C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的渐近线方程为y=±$\sqrt{3}$x,且过点$M({\sqrt{2},\sqrt{3}})$,其离心率为e,抛物线C2的顶点为坐标原点,焦点为$({\frac{e}{2},0})$.
(I)求抛物线C2的方程;
(II)O为坐标原点,设A,B是抛物线上分别位于x轴两侧的两个动点,且$\overrightarrow{OA}•\overrightarrow{OB}$=12.
(i)求证:直线AB必过定点,并求出该定点P的坐标; (ii)过点P作AB的垂线与抛物线交于C,D两点,求四边形ACBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列说法正确的是(  )
A.经过三点有且只有一个平面
B.经过两条直线有且只有一个平面
C.经过平面外一点有且只有一个平面与已知平面垂直
D.经过平面外一点有且只有一条直线与已知平面垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某一算法程序框图如图所示,则输出的S的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过抛物线C:y2=8x的焦点作直线l与C交于A,B两点,它们到直线x=-3的距离之和等于7,则满足条件的l(  )
A.恰有一条B.恰有两条C.有无数多条D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$f(x)=lg\frac{x}{2-x}$,若f(a)+f(b)=0,则$\frac{4}{a}+\frac{1}{b}$的最小值是$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案