精英家教网 > 高中数学 > 题目详情
10.设抛物线x2=2y的焦点为F,经过点P(1,3)的直线l与抛物线相交于A,B两点,且点P恰为AB的中点,则$|\overrightarrow{AF}|+|\overrightarrow{BF}|$=7.

分析 求出焦点坐标和准线方程,过A、B、P 作准线的垂线段,垂足分别为 M、N、R,利用抛物线的定义得到|AM|+|BN|=2|PR|,求得结果.

解答 解:抛物线 x2=2y的焦点为F(0,0.5),准线方程为y=-0,5,
过A、B、P 作准线的垂线段,
垂足分别为 M、N、R,
点P恰为AB的中点,故|PR|是直角梯形AMNB的中位线,故|AM|+|BN|=2|PR|.
由抛物线的定义可得|AF|+|BF|=|AM|+|BN|=2|PR|=2|3-(-0.5)|=7,
故答案为:7

点评 本题考查抛物线的定义、标准方程,以及简单性质的应用,利用抛物线的定义得到|AM|+|BR|=2|PN|,是解题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,某小区准备将闲置的一直角三角形地块开发成公共绿地,图中$∠B=\frac{π}{2},AB=a,BC=\sqrt{3}a$.设计时要求绿地部分(如图中阴影部分所示)有公共绿地走道MN,且两边是两个关于走道MN对称的三角形(△AMN和△A'MN).现考虑方便和绿地最大化原则,要求点M与点A,B均不重合,A'落在边BC上且不与端点B,C重合,设∠AMN=θ.
(1)若$θ=\frac{π}{3}$,求此时公共绿地的面积;
(2)为方便小区居民的行走,设计时要求AN,A'N的长度最短,求此时绿地公共走道MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{2}{x^2}$-a1nx+b(a,b∈R).
(Ⅰ)若曲线y=f(x)在x=1处的切线的方程为3x-y-3=0,求实数a,b的值;
(Ⅱ)若-2≤a<0,对任意x1,x2∈(0,2],不等式|f(x1)-f(x2)|≤m|$\frac{1}{x_1}-\frac{1}{x_2}$|恒成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线 C:y=$\frac{1}{2}$x2,过不在y轴上的点P作C的两条切线PA,PB,切点分别为A,B.直线AB与y轴交于点 M,直线PO(O为坐标原点)与AB交于点N,且PN⊥AB.
(Ⅰ)证明M是一个定点;
(Ⅱ)求$\frac{|PN|}{|MN|}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设F1,F2是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点,M是C上一点,O是坐标原点,若|MF1|=2|MF2|,|MF2|=|OF2|,则C的离心率是(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{5}{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,a,b,c分别是A,B,C的对边,且$\frac{tanC}{tanB}=-\frac{c}{2a+c}$.
(I)求B;
(II)若b=2$\sqrt{3}$,a+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,圆锥的轴截面为三角形SAB,O为底面圆圆心,C为底面圆周上一点,D为BC的中点.
(I)求证:平面SBC⊥平面SOD;
(II)如果∠AOC=∠SDO=60°,BC=2$\sqrt{3}$,求该圆锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.执行如图所示的程序框图,输出的i=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知命题p:?x>0,总有(x+1)ex>1.则¬p为?x0>0,使得$({x_0}+1){e^{x_0}}≤1$.

查看答案和解析>>

同步练习册答案