精英家教网 > 高中数学 > 题目详情
19.执行如图所示的程序框图,输出的i=4.

分析 计算每次循环的结果,与判断框条件比较,即可得到结论.

解答 解:第一次循环,S=$\frac{2}{3}$,i=2;
第二次循环,S=$\frac{2}{5}$,i=3;
第三次循环,S=$\frac{2}{7}$,i=4;
此时$\frac{2}{7}$>$\frac{1}{3}$不成立,退出循环,输出i=4.
故答案为:4.

点评 本题考查了循环结构以及计算能力的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.等差数列x1,x2,x3,…,x11的公差为1,若以上述数据x1,x2,x3,…,x11为样本,则此样本的方差为(  )
A.10B.20C.55D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设抛物线x2=2y的焦点为F,经过点P(1,3)的直线l与抛物线相交于A,B两点,且点P恰为AB的中点,则$|\overrightarrow{AF}|+|\overrightarrow{BF}|$=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列说法正确的是(  )
A.经过三点有且只有一个平面
B.经过两条直线有且只有一个平面
C.经过平面外一点有且只有一个平面与已知平面垂直
D.经过平面外一点有且只有一条直线与已知平面垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某一算法程序框图如图所示,则输出的S的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若一直线的参数方程为$\left\{\begin{array}{l}{x={x}_{0}+\frac{1}{2}t}\\{y={y}_{0}-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),则此直线的倾斜角为(  )
A.60°B.120°C.300°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过抛物线C:y2=8x的焦点作直线l与C交于A,B两点,它们到直线x=-3的距离之和等于7,则满足条件的l(  )
A.恰有一条B.恰有两条C.有无数多条D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x∈N|x≤1},B={x|x2-x-2≤0},则A∩B=(  )
A.{0,1}B.{-1,0,1}C.[-1,1]D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y≤0\\ x-y-3≤0\end{array}\right.$,设x2+y2+4x的最大值点为A,则经过点A和B(-2,-3)的直线方程为(  )
A.3x-5y-9=0B.x+y-3=0C.x-y-3=0D.5x-3y+9=0

查看答案和解析>>

同步练习册答案