精英家教网 > 高中数学 > 题目详情
偶函数f(x)满足f(x-1)=f(x+1),且在x∈[0,1]时,f(x)=x,则关于x的方程f(x)=(
1
10
x在x∈[0,4]上解的个数是
 
考点:抽象函数及其应用
专题:函数的性质及应用
分析:根据已知条件推导函数f(x)的周期,再利用函数与方程思想把问题转化,画出函数的图象,即可求解.
解答: 解:∵f(x-1)=f(x+1),
令x=x+1
∴f(x)=f(x+2),
∴函数f(x)是以2为周期的周期函数.
∵x∈[0,1]时,f(x)=x,
又∵f(x)是偶函数,
∴可得图象如图.
∴f(x)=(
1
10
)
x在x∈[0,4]上解的个数是4个.
故答案为:4
点评:本题考查函数的性质,体现了函数与方程思想,数形结合思想,转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆C:
x2
4
+
y2
3
=1的左、右顶点分别为A1,A2,点P在C上且直线PA2的斜率的取值范围是[-3,-1],那么直线PA1斜率的取值范围是(  )
A、[
1
4
3
4
]
B、[
1
2
3
4
]
C、[
1
2
,1]
D、[
3
4
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:x>1或x<-3,条件q:x>a,且q是p的充分而不必要条件,则a的取值范围是(  )
A、a≥1B、a≤1
C、a≥-3D、a≤-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+4x+2b-4a,当x∈(-∞,-2)∪(6,+∞)时,f(x)<0;当x∈(-2,6)时,f(x)>0.
(Ⅰ)求a、b的值;
(Ⅱ)若实数m>0,且f(x)>0的一个充分不必要条件是{x|m<x<2m+4},求m的取值范围;
(Ⅲ)设F(x)=-kf(x)+4(k+1)x+2(6k-1),当k取何值时,对?x∈[0,2],函数F(x)的值恒为负数?

查看答案和解析>>

科目:高中数学 来源: 题型:

读右侧程序框图,该程序运行后输出的A值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log
1
2
(x2-2ax+3).
(1)若f(x)的定义域为R,求a的取值范围;
(2)若f(-1)=-3,求f(x)单调区间;
(3)是否存在实数a,使f(x)在(-∞,2)上为增函数?若存在,求出a的范围?若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、命题“若x2=1,则x=1”的否命题是“若x2=1,则x≠1”
B、“x=-1”是“x2-x-2=0”的必要不充分条件
C、“tanx=1”是“x=
π
4
”的充分不必要条件
D、命题“若x=y,则sinx=siny”的逆否命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,如果输入的N值是6,那么输出p的值是(  )
A、15B、105
C、120D、720

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中是假命题的是(  )
A、?a,b∈R+,lg(a+b)≠lga+lgb
B、?φ∈R,函数f(x)=sin(2x+φ)是偶函数
C、?α,β∈R,使得cos(α+β)=cosα+cosβ
D、?m∈R,使f(x)=(m-1)•xm2-4m+3是幂函数,且在(0,+∞)上递减

查看答案和解析>>

同步练习册答案