【题目】如图,矩形
中,
,
,点
是
上的动点.现将矩形
沿着对角线
折成二面角
,使得
.![]()
(Ⅰ)求证:当
时,
;
(Ⅱ)试求
的长,使得二面角
的大小为
.
【答案】解:(Ⅰ)连结
,
.![]()
在矩形
中,
,
,
.
在
中,∵
,
,
∵
,
,即
.
又在
中,![]()
,
∴在
中,
,
,
又
,
∴
平面
.
∴
.
(Ⅱ)解:在矩形
中,过
作
于
,并延长交
于
. 沿着对角线
翻折后,
由(Ⅰ)可知,
两两垂直,
以
为原点,
的方向为
轴的正方向建立空间直角坐标系
,则
,
平面
,
为平面
的一个法向量.
设平面
的法向量为 ![]()
,
,
由
得 ![]()
取
则
,
.
即
,
.
当
时,二面角
的大小是 ![]()
【解析】(Ⅰ)根据题目中所给的条件的特点,连结DF,BF.通过计算推出DF⊥AC,得到D'F⊥AC,然后证明D'F⊥平面ABC.推出利用线面垂直的性质得到D'F⊥BC.
(Ⅱ)先说明OE,OC,OD'两两垂直,以O为原点,建立适当的空间直角坐标系O-xyz,求出平面AD'F的一个法向量.以及平面BD'F的法向量,通过用空间向量求平面间的夹角的方法,利用向量的数量积求解二面角的平面角的余弦值即可.
科目:高中数学 来源: 题型:
【题目】若直角坐标平面内的两个不同点
、
满足条件:①
、
都在函数
的图像上;②
、
关于原点对称,则称点对
是函数
的一对“友好点对”(注:点对
与
看作同一对“友好点对”).已知函数
,则此函数的“友好点对”有( )对.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“抛物线
的准线方程为
”是“抛物线
的焦点与双曲线
的焦点重合”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实,黄实,利用2×勾×股+(股﹣勾)2=4×朱实+黄实=弦实,化简,得勾2+股2=弦2 , 设勾股中勾股比为1:
,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( ) ![]()
A.866
B.500
C.300
D.134
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆锥曲线
(
是参数)和定点
,
、
是圆锥曲线的左、右焦点.
(1)求经过点
且垂直于直线
的直线
的参数方程;
(2)以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,求直线
的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x,y∈R,且
,则存在θ∈R,使得xcosθ+ysinθ+1=0成立的P(x,y)构成的区域面积为( )
A.4
﹣ ![]()
B.4
﹣ ![]()
C.![]()
D.
+ ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a·2x+b·3x , 其中常数a,b满足ab≠0.
(1)若ab>0,判断函数f(x)的单调性;
(2)若ab<0,求f(x+1)>f(x)时x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com