精英家教网 > 高中数学 > 题目详情
如果一个函数f(x)满足:
(1)定义域为R;
(2)任意x1,x2∈R,若x1+x2=0,则f(x1)+f(x2)=0;
(3)任意x∈R,若t>0,f(x+t)>f(x).
则f(x)可以是(  )
A.y=-xB.y=3xC.y=x3D.y=log3x
由条件(1)定义域为R,排除D;
由条件(2)任意x1,x2∈R,若x1+x2=0,则f(x1)+f(x2)=0,即任意x∈R,f(-x)+f(x)=0,即函数f(x)为奇函数,排除B
由条件(3)任意x∈R,若t>0,f(x+t)>f(x).即x+t>x时,总有f(x+t)>f(x),即函数f(x)为R上的单调增函数,排除A
故选 C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设函数,且,则(  )
A.2B.1C.0D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若奇函数f(x)在区间(0,+∞)上是减函数,且f(-1)=0,则不等式xf(x)>0的解集______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax+lnx,a∈R.
(1)讨论y=f(x)的单调性;(2)若定义在区间D上的函数y=g(x)对于区间D上的任意两个值x1、x2总有不等式
1
2
[g(x1)+g(x2)]≥g(
x1+x2
2
)
成立,则称函数y=g(x)为区间D上的“凹函数”.
试证明:当a=-1时,g(x)=|f(x)|+
1
x
为“凹函数”.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln
x+1
x-1

(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)对于x∈[2,6],f(x)=ln
x+1
x-1
>ln
m
(x-1)(7-x)
恒成立,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=aln(x+1)-x2,若在区间(0,1)内任取两个不同实数m,n,不等式
f(m+1)-f(n+1)
m-n
<1恒成立,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(Ⅰ)已知f(x)=
2
3x-1
+k
是奇函数,求常数k的值.;
(Ⅱ)已知函数f(x)=x|x-m|(x∈R)且f(4)=0.
①求实数m的取值.
②如图,作出函数f(x)的图象并写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
a2x-(t-1)
ax
(a>0且a≠1)是定义域为R的奇函数
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx-x2)+f(x-1)<0对一切x∈R恒成立的实数k的取值范围;
(3)若函数f(x)的反函数过点(
3
2
,1)
,是否存在正数m,且m≠1使函数g(x)=logm[a2x+a-2x-mf(x)]在[1,log23]上的最大值为0,若存在求出m的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是 ______.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是 ______.

查看答案和解析>>

同步练习册答案