精英家教网 > 高中数学 > 题目详情
若奇函数f(x)在区间(0,+∞)上是减函数,且f(-1)=0,则不等式xf(x)>0的解集______.
由f(x)为奇函数,且在(0,+∞)上是减函数,得f(x)在(-∞,0)也是减函数,
又f(-1)=0,∴f(1)=-f(-1)=0,
作出f(x)的草图,如图所示:
由图象可得,xf(x)>0?
x>0
f(x)>0
x<0
f(x)<0
?0<x<1或-1<x<0,
∴xf(x)>0的解集为:{x|0<x<1或-1<x<0},
故答案为:{x|0<x<1或-1<x<0}.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

判断下列函数的奇偶性:
(1)fx)=|x+1|-|x-1|;(2)fx)=(x-1)·
(3);(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(logax)=
a
a-1
(x-
1
x
)(a>0且a≠1).
(1)求f(x)解析式并判断f(x)的奇偶性;
(2)对于(1)中的函数f(x),若?x1,x2∈R当x1<x2时都有f(x1)<f(x2)成立,求满足条件f(1-m)+f(m2-1)<0的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于任意的x∈R,不等式2x2-a
x2+1
+3>0
恒成立,则实数a的取值范围是(  )
A.a<2
2
B.a≤2
2
C.a<3D.a≤3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知奇函数f(x)和偶函数g(x)的定义域都是(-∞,0)∪(0,+∞),且当x<0时,f’(x)g(x)+f(x)g’(x)>0.若g(-2)=0,则不等式f(x)g(x)>0的解集是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=x2+ax+3
(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围;
(2)当x∈(-∞,1)时,f(x)≥a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果一个函数f(x)满足:
(1)定义域为R;
(2)任意x1,x2∈R,若x1+x2=0,则f(x1)+f(x2)=0;
(3)任意x∈R,若t>0,f(x+t)>f(x).
则f(x)可以是(  )
A.y=-xB.y=3xC.y=x3D.y=log3x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是R上的奇函数,且满足f(x+2)=-f(x),当x∈(0,2)时,f(x)=2x2,则f(2023)等于(  )
A.-4B.4C.-2D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义运算:.设函数,则函数
A.奇函数B.偶函数C.定义域内的单调函数D.周期函数

查看答案和解析>>

同步练习册答案