精英家教网 > 高中数学 > 题目详情
已知最小正周期为2的函数y=f(x),当x∈[-1,1]时,f(x)=x2,则函数y=f(x)(x∈R)的图象与y=|log5x|的图象的交点个数为______.
当x∈[-1,1]时,f(x)=x2,∴f(x)∈[0,1];又函数y=f(x)是最小正周期为2的函数,当x∈R时,f(x)∈[0,1].
y=|log5x|的图象即把函数y=log5x的图象在x轴下方的对称的反折到x轴的上方,且x∈(0,1]时,函数单调递减,y∈[0,+∞);
x∈(1,+∞)时,函数y=log5x单调递增,y∈(0,+∞),且log55=1.
据以上画出图象如图所示:
根据以上结论即可得到:函数y=f(x)(x∈R)的图象与y=|log5x|的图象的交点个数为5.
故答案为5.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
mx+n
1+x2
是定义在[-
1
2
1
2
]上是奇函数,且f(-
1
4
)=
8
17

(1)确定函数f(x)解析式
(2)用定义证明函数f(x)在[
1
2
1
2
]上是减函数
(3)若实数t满足f(
t
3
)+f(t+1)<0,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-2ax-(2a+2)
(Ⅰ)解关于x的不等式f(x)>x;
(Ⅱ)若f(x)+3≥0在区间(-1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
ax2-(1+a)x+1

(1)当a=0时,求证函数f(x)在它的定义域上单调递减
(2)是否存在实数a使得区间[-1,1]上一切x都满足f(x)≤
3
,若存在,求实数a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x|x-a|(x∈R).
(1)判断f(x)的奇偶性,并证明;
(2)求实数a的取值范围,使函数g(x)=f(x)+2x+1在R上恒为增函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)一个矩形的面积为8,如果此矩形的对角线长为y,一边长为x,试把y表示成x的函数.
(2)证明:函数f(x)=x2+1是偶函数,且在[0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知以T=4为周期的函数f(x)=
m
1-x2
,x∈(-1,1]
1-|x-2|,x∈(1,3]
,其中m>0.若方程3f(x)=x恰有5个实数解,则m的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)为奇函数,g(x)为偶函数,若f(x)-g(x)=(
1
2
x,则f(1)-g(-2)=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=
4x+1
2x
的奇偶性(  )
A.既奇又偶B.非奇非偶C.奇函数D.偶函数

查看答案和解析>>

同步练习册答案