精英家教网 > 高中数学 > 题目详情
5.化简$\frac{{sin(θ-5π)cos(-\frac{π}{2}-θ)cos(7π-θ)}}{{sin(θ-\frac{3π}{2})sin(-3π-θ)}}$.

分析 由条件利用诱导公式进行化简所给的式子,可得结果.

解答 解:$\frac{{sin(θ-5π)cos(-\frac{π}{2}-θ)cos(7π-θ)}}{{sin(θ-\frac{3π}{2})sin(-3π-θ)}}$=$\frac{sin(θ-π)•cos(\frac{π}{2}+θ)•cos(π-θ)}{-sin(\frac{3π}{2}-θ)•sin(π-θ)}$=$\frac{-sinθ•(-sinθ)•(-cosθ)}{cosθ•sinθ}$=-sinθ.

点评 本题主要考查应用诱导公式化简三角函数式,要特别注意符号的选取,这是解题的易错点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设全集U={1,2,3,4,5},集合A={1,2},B={2,4},则CU(A∪B)=(  )
A.{1,3,4,5}B.{1,4}C.{1,2,4}D.{3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列命题中,正确的命题有②④.
①回归直线$\hat y=\hat bx+\hat a$恒过样本点的中心$(\overline x,\overline y)$,且至少过一个样本点;
②将一组数据的每个数据都加一个相同的常数后,方差不变;
③用相关指数R2来刻画回归效果,R2越接近0,说明模型的拟合效果越好;
④用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第一组中用抽签法确定的号码为6号.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义函数max{f(x),g(x)}=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,则max{sinx,cosx}的最小值为-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆锥的底面半径为4,高为9,则该圆锥的体积为48π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设m∈N*,且m<25,则(20-m)(21-m)…(26-m)等于(  )
A.$A_{26-m}^7$B.$C_{26-m}^7$C.$A_{20-m}^7$D.$A_{26-m}^6$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设复数z满足$\frac{1+z}{1+i}$=2-i,则|$\frac{1}{z}$|=(  )
A.$\sqrt{5}$B.$\frac{1}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某兴趣小组有9名学生.若从9名学生中选取3人,则选取的3人中恰好有一个女生的概率是$\frac{15}{28}$.
(1)该小组中男女学生各多少人?
(2)9个学生站成一列队,现要求女生保持相对顺序不变(即女生 前后顺序保持不变)重新站队,问有多少种重新站队的方法?(要求用数字作答)
(3)9名学生站成一列,要求男生必须两两站在一起,有多少种站队的方法?(要求用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量|$\overrightarrow a$|=4,|$\overrightarrow b$|=3,$(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=61$.
(1)求|$\overrightarrow a+\overrightarrow b$|;
(2)求向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影.

查看答案和解析>>

同步练习册答案