精英家教网 > 高中数学 > 题目详情
10.若$cosxcosy-sinxsiny=\frac{1}{4}$,则cos(2x+2y)=-$\frac{7}{8}$.

分析 已知等式左边利用两角和与差的余弦函数公式化简,求出cos(x+y)的值,所求式子利用二倍角的余弦函数公式化简后,将cos(x+y)的值代入计算即可求出值.

解答 解:∵cosxcosy-sinxsiny=cos(x+y)=$\frac{1}{4}$,
∴cos(2x+2y)=cos2(x+y)=2cos2(x+y)-1=2×($\frac{1}{4}$)2-1=-$\frac{7}{8}$.
故答案为:-$\frac{7}{8}$.

点评 此题考查了两角和与差的余弦函数公式,二倍角的余弦函数公式,熟练掌握公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知f(x)=x2f'(1)-3x,则f'(2)的值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知公比为q的等比数列{an}的前6项和S6=63,且$4{a_1},\frac{3}{2}{a_2},{a_2}$成等差数列.
(1)求数列{an}的通项公式an
(2)设{bn}是首项为2,公差为-a1的等差数列,其前n项和为Tn,是否存在n∈N*,使得不等式Tn>bn成立?若存在,求出n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.实数a,b满足2a+2b=1,则函数f(x)=x2-2(a+b)x+2在[-2,2]上(  )
A.单调递增B.单调递减C.先增后减D.先减后增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|x2-4x-5=0},B={x|x2=25}则A∩B=(  )
A.{-1}B.{5,-1}C.{5}D.{-5,5,-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.

(1)根据茎叶图中的数据完成2×2列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
购买意愿强购买意愿弱合计
20-40岁
大于40岁
合计
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,求这2人都是年龄大于40岁的概率.
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{2x,-1<x<2}\\{\frac{{x}^{2}}{2},x≥2}\end{array}\right.$,则f(f($\frac{3}{2}$))=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.有10道数学单项选择题,每题选对得4分,不选或选错得0分.已知某考生能正确答对其中的7道题,余下的3道题每题能正确答对的概率为$\frac{1}{3}$.假设每题答对与否相互独立,记ξ为该考生答对的题数,η为该考生的得分,则P(ξ=9)=$\frac{2}{9}$,Eη=32(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知(x0,y0,z0)是关于x、y、z的方程组$\left\{\begin{array}{l}{ax+by+cz=0}\\{cx+ay+bz=0}\\{bx+cy+az=0}\end{array}$的解.
(1)求证:$|\begin{array}{l}{a}&{b}&{c}\\{c}&{a}&{b}\\{b}&{c}&{a}\end{array}|$=(a+b+c)•$|\begin{array}{l}{a}&{b}&{1}\\{c}&{a}&{1}\\{b}&{c}&{1}\end{array}|$;
(2)设z0=1,a、b、c分别为△ABC三边长,试判断△ABC的形状,并说明理由;
(3)设a、b、c为不全相等的实数,试判断“a+b+c=0”是“x02+y02+z02>0”的④条件,并证明:①充分非必要;②必要非充分;③充分且必要;④非充分非充要.

查看答案和解析>>

同步练习册答案