精英家教网 > 高中数学 > 题目详情

x2y2-2x+4y-4=0与直线2txy-2-2t=0(t∈R)的位置关系为(  )

A.相离                           B.相切

C.相交                                                D.以上都有可能


C ∵圆的方程可化为(x-1)2+(y+2)2=9,

∴圆心为(1,-2),半径r=3.

又圆心在直线2txy-2-2t=0上,

∴圆与直线相交.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


函数f(x)=(m2m-1)xm22m3是幂函数,且在(0,+∞)上是减函数,则实数m的值为(  )

A.2    B.3    C.4    D.5

查看答案和解析>>

科目:高中数学 来源: 题型:


当前环境问题已成为问题关注的焦点,2009年哥本哈根世界气候大会召开后,为减少汽车尾气对城市空气的污染,某市决定对出租车实行使用液化气替代汽油的改装工程,原因是液化气燃烧后不产生二氧化硫、一氧化氮等有害气体,对大气无污染,或者说非常小.请根据以下数据:①当前汽油价格为2.8元/升,市内出租车耗油情况是一升汽油大约能跑12km;②当前液化气价格为3元/千克,一千克液化气平均可跑15~16km;③一辆出租车日平均行程为200km.

(1)从经济角度衡量一下使用液化气和使用汽油哪一种更经济(即省钱);

(2)假设出租车改装液化气设备需花费5000元,请问多长时间省出的钱等于改装设备花费的钱.

查看答案和解析>>

科目:高中数学 来源: 题型:


以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为(  )

A.x2y2+2x=0                       B.x2y2x=0

C.x2y2x=0                                    D.x2y2-2x=0

查看答案和解析>>

科目:高中数学 来源: 题型:


已知直线axby=1(ab是实数)与圆Ox2y2=1(O是坐标原点)相交于AB两点,且△AOB是直角三角形,点P(ab)是以点M(0,1)为圆心的圆M上的任意一点,则圆M的面积的最小值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:


以圆C1x2y2-12x-2y-13=0和圆C2x2y2+12x+16y-25=0公共弦为直径的圆的方程为______________.

查看答案和解析>>

科目:高中数学 来源: 题型:


F1F2分别是椭圆=1的左、右焦点,P为椭圆上一点,MF1P的中点,|OM|=3,则P点到椭圆左焦点的距离为(  )

A.4                               B.3

C.2                               D.5

查看答案和解析>>

科目:高中数学 来源: 题型:


F1F2分别是双曲线=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于AB两点.若△ABF2是等边三角形,则该双曲线的离心率为________.

查看答案和解析>>

科目:高中数学 来源: 题型:


由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于

四个侧面(   )

A.各正三角形内任一点     B.各正三角形的某高线上的点

C.各正三角形的中心       D.各正三角形外的某点

查看答案和解析>>

同步练习册答案