精英家教网 > 高中数学 > 题目详情
10.已知函数y=$\frac{1+sinx-cosx}{1+sinx+cosx}$.
(1)求函数的定义域;
(2)在判断该函数的奇偶性时,某同学的解法如下:
y=$\frac{1+sinx-cosx}{1+sinx+cosx}$=$\frac{2si{n}^{2}\frac{x}{2}+2sin\frac{x}{2}cos\frac{x}{2}}{2co{s}^{2}\frac{x}{2}+2sin\frac{x}{2}-cos\frac{x}{2}}$=$\frac{2sin\frac{x}{2}(sin\frac{x}{2}+cos\frac{x}{2})}{2cos\frac{x}{2}(sin\frac{x}{2}+cos\frac{x}{2})}$=tan$\frac{x}{2}$
∵函数y=tan$\frac{x}{2}$是奇函数,
∴函数y=$\frac{1+sinx-cosx}{1+sinx+cosx}$是奇函数.
参照(1)的结果,判断该同学的结论是否正确,如果你认为不正确,试指出该同学得出错误结论的原因,并给出正确的结论.

分析 (1)由y解析式分母不为0,求出x的范围,即为函数的定义域;
(2)该同学的结论错误,出错的原因是:由(1)求出的定义域不关于原点对称,故y为非奇非偶函数.

解答 解:(1)函数y满足:1+sinx+cosx≠0,
∴1+$\sqrt{2}$sin(x+$\frac{π}{4}$)≠0,
∴sin(x+$\frac{π}{4}$)≠-$\frac{\sqrt{2}}{2}$,
∴x+$\frac{π}{4}$≠2kπ-$\frac{3π}{4}$且x+$\frac{π}{4}$≠2kπ-$\frac{π}{4}$,x∈Z,
∴x≠2kπ-π且x≠2kπ-$\frac{π}{2}$,x∈Z,
则函数的定义域为{x|x≠2kπ-π且x≠2kπ-$\frac{π}{2}$,x∈Z};
(2)该同学结论不正确,
理由为:显然自变量x不关于原点对称,故y为非奇非偶函数.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若f′(1)=2012,则$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{△x}$=2012,$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{-△x}$=-2012,$\underset{lim}{△x→0}$$\frac{f(1)-f(1+△x)}{4△x}$=-503,$\underset{lim}{△x→0}$$\frac{f(1+2△x)-f(1)}{△x}$=4024.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:
福娃名称贝贝晶晶欢欢迎迎妮妮
数量11123
从中随机地选取5只.
(Ⅰ)求选取的5只恰好组成完整“奥运吉祥物”的概率;
(Ⅱ)若完整地选取奥运会吉祥物记10分;若选出的5只中仅差一种记8分;差两种记6分;以此类推.设ξ表示所得的分数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若x>0,则函数f(x)=x+$\frac{32}{{x}^{2}}$的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F分别在BC,AD上,EF∥AB,现将四边形ABCD沿EF折起,使平面ABEF⊥平面EFDC.
(1)若BE=1,是否在折叠后的线段AD上存在一点P,且$\overrightarrow{AP}$=λ$\overrightarrow{PD}$,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,说明理由;
(2)求三棱锥A-CDF的体积的最大值,并求出此时二面角E-AC-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2lnx-x2+ax-a+1(a∈R)
(Ⅰ)当a=2时,求f(x)的图象在(1,f(1))处的切线方程;
(Ⅱ)若f(x)≤0在区间[1,+∞)上恒成立,求实数a的取值范围;
(Ⅲ)若函数f(x)的图象与x轴有两个不同的交点A(x1,0),B(x2,0)且0<x1<x2,求证:f′($\frac{{x}_{1}{+x}_{2}}{2}$)<0(其中f′(x)是f(x)的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an}与{bn}均是等差数列,an:b1=bn:a1=4,{an}的前n项的和是{bn}的和的2倍,则两数列的公差d1和d2之比为26:1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知tanα=-$\frac{1}{2}$,则$\frac{2sinαcosα}{si{n}^{2}α-co{s}^{2}α}$=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sinx=-0.4632,求0°~360°(或0~2π)范围内的角x(精确到0.01°).

查看答案和解析>>

同步练习册答案