精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=mex+x2+nx,{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围为(  )
A.(0,4)B.[0,4)C.[0,4]D.(4,+∞)

分析 由{x|f(x)=0}={x|f(f(x))=0}可得f(0)=0,从而求得m=0;从而化简f(f(x))=(x2+nx)(x2+nx+n)=0,从而讨论求得.

解答 解:设x1∈{x|f(x)=0}={x|f(f(x))=0},
∴f(x1)=f(f(x1))=0,
∴f(0)=0,
即f(0)=m=0,
故m=0;
故f(x)=x2+nx,
f(f(x))=(x2+nx)(x2+nx+n)=0,
当n=0时,成立;
当n≠0时,0,-n不是x2+nx+n=0的根,
故△=n2-4n<0,
解得:0<n<4;
综上所述,0≤n+m<4;
故选:B.

点评 本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知P是抛物线y2=4x上一点,F是该抛物线的焦点,则以PF为直径且过(0,2)的圆的标准方程为(x-2.5)2+(y-2)2=6.25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若实数x,y满足关系式x+y+1=0,则式子S=$\sqrt{{x}^{2}+{y}^{2}-2x-2y+2}$的最小值为$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}的前n项和Sn满足an+2SnSn-1=0(n≥2),a1=1,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若x,y满足x2-2xy+3y2=4,则$\frac{1}{{x}^{2}+{y}^{2}}$的最大值与最小值的和是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在平行四边形ABCD中,AB⊥BD,4•AB2+2•BD2=1.将此平行四边形沿BD折成直二面角,则三棱锥A-BCD外接球的表面积为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}前n项的和为Sn,且(2n-1)Sn+1-(2n+1)Sn=4n2-1(n∈N
(1)求a1
(2)求Sn,an
(3)设bn=|an-30|,求{bn}的前n项的和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=-$\frac{{x}^{2}+2x+4}{x}$,g(x)=lnx-$\frac{1}{2}$x2+$\frac{9}{2}$,实数a,b满足a<b<0,若?x1∈[a,b],?x2∈(0,+∞),使得f(x1)=g(x2)成立,则b-a的最大值为(  )
A.3$\sqrt{2}$B.4C.4$\sqrt{3}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设数列{an}满足a1=1,(1-an+1)(1+an)=1(n∈N+),则$\sum_{k=1}^{100}{({{a_k}{a_{k+1}}})}$的值为$\frac{100}{101}$.

查看答案和解析>>

同步练习册答案